
LEARNING TO COMPOSITIONALLY REASON OVER NATURAL LANGUAGE

Nitish Gupta

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Dan Roth, Professor of Computer and Information Science

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Committee

Mitch Marcus, Professor of Computer and Information Science

Lyle Ungar, Professor of Computer and Information Science

Chris Callison-Burch, Associate Professor of Computer and Information Science

Luke Zettlemoyer, Professor of Computer Science & Engineering, University of Washington

LEARNING TO COMPOSITIONALLY REASON OVER NATURAL LANGUAGE

© COPYRIGHT

2021

Nitish Gupta

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

Dedicated to Mummy and Papa

iii

ACKNOWLEDGMENT

It is hard to imagine a better advisor than Dan Roth. His exceptional enthusiasm for research and

encouragement to always work on important and challenging problems are some of his many teach-

ings that will help me throughout my career. Dan’s guidance in technical aspects of research and

his sage advice on various professional aspects has helped me towards becoming a well-rounded

researcher. Dan has been extremely kind and considerate in helping me handle the various ups and

downs I’ve encountered in the six years of PhD life, which has made working with him extremely

joyous. I am immensely grateful to Dan for all that he has done for me.

I am forever indebted to Sameer Singh for the support and mentorship that he has provided me over

all these years. Right from agreeing to mentor me, who was an unexperienced undergrad, to helping

me with graduate schools applications, and eventually being a close collaborator throughout my PhD

journey, Sameer’s contributions to my growth are inexplicable in words. It is only fair to say that

none of this would have been possible without you. I feel extremely fortunate to have gotten the

opportunity to work with Matt Gardner towards the later half of my PhD. Matt’s guidance has made

a significant portion of this dissertation possible and I have learnt a great deal from him. Apart from

being excellent researchers, Dan, Sameer and Matt are few of the nicest human beings I know. They

have always treated me with utmost respect, and their kindness towards others, especially junior

colleagues, is something I will always aim to emulate.

I would like to thank the members of my thesis committee – Mitch Marcus, Lyle Ungar, Chris

Callison-Burch, and Luke Zettlemoyer. Their unique and valuable perspectives, as well as sugges-

tions on improving the technical presentation have significantly helped me improve this dissertation.

I feel lucky to have been a part of vibrant NLP communities at UIUC and UPenn. Over the years,

I have come across brilliant people from whom I have learned a lot and developed close friend-

ships with. I would like to thank the former members of CogComp—Mark Sammons, Christos

Christodoulopoulos, Subhro Roy, Shyam Upadhyay, Stephen Mayhew, Daniel Khashabi, Haoruo

Peng, and Chen-Tse Tsai—who were extremely welcoming and helped me fit in the group. A huge

iv

thanks to the past and present students at Penn: Dan Deutsch, Jordan Kodner, Anne Cocos, Joao Se-

doc, Reno Kriz, Daphne Ippolito, Rebecca Iglesias-Flores, Oshin Agarwal, Sihao Chen, Hengfeng

He, Ben Zhou, Xiaodong Yu, and Krunal Shah. I will dearly miss the stimulating and fun discussions

we had over lunches and happy hours. I cannot thank Snigdha Chaturvedi and Shashank Srivastava

enough for their invaluable friendship, mentorship, and sage advice regarding all aspects of life.

I am grateful to the following people for their tireless efforts behind the scenes to make sure things

run smoothly. Dan Widyono and Marcus Lauer in CETS provided the systems support whenever

and whatever I needed. Jennifer Sheffield in CogComp and Britton Carnevali in CIS have always

efficiently handled all the administrative details, and I thank them for their patience and help.

During summer internships, I was fortunate to have fruitful collaborations with the industry. I

worked with Mike Lewis (Facebook) and Tom Kwiatkowski (Google) closely and interacted with

many other researchers on their teams. The lessons I learned during my internships have informed

the thesis in very different ways and helped me realize the importance of broader impact and real-

world application of academic research.

I am in debt of my friends at Urbana-Champaign and Philadelphia: Tanmay Gupta, Vishaal Mo-

han, Ajit Vikram, Arpit Agrawal, Manisha Muduli, Ashna Jaiswal, Ankit Saxena, Palak Agarwal,

Prathmesh Patil, Meghana Denduluri, Dushyant Sahoo, and Aalok Thakkar. Without your friend-

ship and craziness, my years in PhD would have been much colder and more lonesome. I hope you

enjoyed the laughs as much as I did. Penn Sargam, thank you for giving me the opportunity to play

music on stage, something I did not imagine would be possible during graduate school.

This thesis would not be possible without the encouragement, support and love of my family. To

my (cousin) sister, Nupur didi, who has been a steady support, I am grateful for your unconditional

love and care. My brother, Jeet bhaiya, who has been my role model since childhood, thank you for

being a constant source of encouragement. Finally, Mummy and Papa, I cannot thank you enough

for all the sacrifices you made to provide me with excellent education. I don’t have words to express

how grateful I am for the love and blessings you shower upon me. All that is the best in me is you.

v

ABSTRACT

LEARNING TO COMPOSITIONALLY REASON OVER NATURAL LANGUAGE

Nitish Gupta

Dan Roth

The human ability to understand the world in terms of reusable “building blocks” allows us to gen-

eralize in near-infinite ways. Developing language understanding systems that can compositionally

reason in a similar manner is crucial to achieve human-like capabilities. Designing such systems

presents key challenges in the architectural design of machine learning models and the learning

paradigm used to train them. This dissertation addresses aspects of both of these challenges by

exploring compositional structured models that can be trained using end-task supervision.

We believe that solving complex problems in a generalizable manner requires decomposition into

sub-tasks, which in turn are solved using reasoning capabilities that can be reused in novel con-

texts. Motivated by this idea, we develop a neuro-symbolic model with a modular architecture for

language understanding and focus on answering questions requiring multi-step reasoning against

natural language text. We design an inventory of freely-composable, learnable neural modules for

performing various atomic language understanding and symbolic reasoning tasks in a differentiable

manner. The question guides how these modules are dynamically composed to yield an end-to-end

differentiable model that performs compositional reasoning and can be trained using end-task super-

vision. However, we show that when trained using such supervision, having a compositional model

structure is not sufficient to induce the intended problem decomposition in terms of the modules;

Lack of supervision for the sub-tasks leads to modules that do not freely compose in novel ways,

hurting generalization. To address this, we develop a new training paradigm that leverages paired

examples—instances that share sub-tasks—to provide an additional training signal to that provided

by individual examples. We show that this paradigm induces the intended compositional reasoning

and leads to improved in- and out-of-distribution generalization.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENT . iv

ABSTRACT . vi

LIST OF TABLES . xiii

LIST OF ILLUSTRATIONS . xvii

CHAPTER 1 : Introduction . 1

1.1 Thesis Statement . 6

1.2 Outline of this Dissertation . 7

CHAPTER 2 : Background . 9

2.1 Semantic Parsing . 9

2.1.1 Semantic Meaning Representation . 11

2.1.2 Parsing models and learning . 14

2.1.3 Learning Semantic Parsers from Denotation 18

2.2 Question Answering . 21

2.2.1 Approaches to Reading Comprehension 23

2.3 Neural Module Networks . 24

CHAPTER 3 : Neural Module Networks for Reasoning over Text 29

3.1 Introduction . 30

3.2 Overview of Approach . 31

3.2.1 Components of a NMN for Text . 32

3.2.2 Learning Challenges in NMN for Text . 33

3.3 Modules for Reasoning over Text . 34

3.3.1 Design Choices for Modules and Data Types 35

vii

3.3.2 Discrete vs. Continuous Representations 36

3.3.3 Data Types . 38

3.3.4 Neural Modules for Question Answering 39

3.4 Auxiliary Supervision . 44

3.4.1 Unsupervised Auxiliary Loss for IE . 44

3.4.2 Question Parse and Intermediate Module Output Supervision 45

3.5 Experimental Setup . 45

3.5.1 Dataset . 46

3.5.2 Model Details . 46

3.5.3 Comparative approaches . 48

3.6 Results . 48

3.6.1 Overall . 48

3.6.2 Performance by Question Type. 49

3.6.3 Effect of Additional Supervision . 49

3.6.4 Effect of Training Data Size . 49

3.6.5 Qualitative Analysis . 50

3.7 Future Directions . 51

3.8 Summary . 52

CHAPTER 4 : Module Faithfulness in Compositional Neural Networks 53

4.1 Introduction . 54

4.2 Background . 56

4.2.1 Visual-NMN . 56

4.3 Module-wise Faithfulness . 57

4.3.1 Measuring Faithfulness in Visual-NMN 58

4.3.2 Measuring Faithfulness in Text-NMN . 59

4.4 Improving Faithfulness in NMNs . 59

4.4.1 Choice of Modules . 60

4.4.2 Supervising Module Output . 62

viii

4.4.3 Decontextualized Word Representations 63

4.5 Experimental Setup . 63

4.6 Results . 64

4.6.1 Faithfulness Evaluation in Visual Reasoning 64

4.6.2 Faithfulness Evaluation in Textual Reasoning 66

4.6.3 Measuring Generalization . 66

4.6.4 Qualitative Analysis . 67

4.7 Summary . 68

CHAPTER 5 : Paired Examples as Indirect Supervision in Latent Decision Models 70

5.1 Introduction . 71

5.2 Paired Examples as Indirect Supervision for Latent Decisions 72

5.2.1 Training via Paired Examples in Neural Module Networks 75

5.3 Many Ways of Getting Paired Data . 78

5.3.1 Finding Naturally Occurring Paired Data 78

5.3.2 Paired Data via Augmentation . 78

5.4 Experimental Setup . 80

5.4.1 Dataset . 80

5.4.2 Training Objective . 81

5.4.3 Model Details . 81

5.4.4 Baseline Approaches . 82

5.5 Results . 82

5.5.1 In-distribution Performance . 82

5.5.2 Measuring Faithfulness of NMN execution 83

5.5.3 Evaluating Compositional Generalization 84

5.5.4 Analysis . 85

5.6 Related Approaches . 86

5.7 Summary . 87

ix

CHAPTER 6 : Enforcing Consistency in Weakly Supervised Semantic Parsing 88

6.1 Introduction . 88

6.2 Background . 90

6.3 Consistency Reward for Programs . 91

6.4 Consistency in Language . 93

6.5 Experiments . 95

6.5.1 Dataset . 95

6.5.2 Evaluation Metrics . 95

6.5.3 Experimental Details . 96

6.5.4 Baselines . 97

6.5.5 Results . 97

6.6 Summary . 98

CHAPTER 7 : Neural Compositional Denotational Semantics for Question Answering . . 99

7.1 Introduction . 100

7.2 Model Overview . 101

7.3 Compositional Semantics . 102

7.3.1 Semantic Types . 102

7.3.2 Composition Modules . 104

7.4 Parsing Model . 106

7.4.1 Lexical Representation Assignment . 106

7.4.2 Parsing Questions . 107

7.4.3 Training Objective . 109

7.5 Experimental Details . 109

7.5.1 Dataset . 109

7.5.2 Training Details . 110

7.5.3 Baseline Models . 110

7.6 Results . 111

7.7 Summary . 114

x

CHAPTER 8 : Conclusion . 115

8.1 Summary of Contributions . 118

8.2 Future Directions . 119

APPENDIX . 122

A.1 Auxiliary Supervision in NMN . 122

A.2 Measuring Faithfulness in Visual-NMN . 123

A.3 Details about Modules . 125

A.4 Significance tests . 125

GLOSSARY . 127

BIBLIOGRAPHY . 129

xi

LIST OF TABLES

TABLE 1 : Description of the modules we define and their expected behaviour. All

inputs and outputs are represented as distributions over tokens, numbers,

and dates as described in §3.3.3. 38

TABLE 2 : Performance of different models on the dataset and across different question

types . 48

TABLE 3 : Faithfulness and accuracy on NLVR2. “decont.” refers to decontextualized

word representations. Precision, recall, and F1 are averages across exam-

ples, and thus F1 is not the harmonic mean of the corresponding precision

and recall. 65

TABLE 4 : Faithfulness and performance scores for various NMNs onDROP. ∗lower is

better. †min-max is average faithfulness of find-min-num and find-max-num;

find-arg of find-num and find-date. 66

TABLE 5 : Performance on DROP (pruned): Using our paired objective with all differ-

ent kinds of paired-data leads to improvements in NMN. Model achieves

the best performance when all kinds of paired-data are used together. . . . 82

TABLE 6 : Faithfulness scores: Using the paired objective significantly improves in-

termediate output predictions. †denotes the average of find-num & find-date and

find-min-num & find-max-num. 82

TABLE 7 : Measuring compositional-generalization: NMN performs substantially bet-

ter when trained with the paired objective and performs even better when

gold-programs are used for evaluation (w/ G.P). 84

xii

TABLE 8 : Using constructed paired examples for all three types of questions—min,

max, and count—leads to dramatically better count performance. Without

all three, the model finds shortcuts to satisfy the consistency constraint and

does not learn correct module execution. 85

TABLE 9 : Performance onNLVR:Design changes in the logical language and consistency-

based training, both significantly improve performance. Larger improve-

ments in consistency indicate that our approach efficiently tackles spurious

programs. 97

TABLE 10 : Results for Short Questions (CLEVRGEN): Performance of our model com-

pared to baseline models on the Short Questions test set. The LSTM (No

KG) has accuracy close to chance, showing that the questions lack trivial bi-

ases. Our model almost perfectly solves all questions showing its ability to

learn challenging semantic operators, and parse questions only using weak

end-to-end supervision. 111

TABLE 11 : Results for Complex Questions (CLEVRGEN): All baseline models fail to

generalize well to questions requiring longer chains of reasoning than those

seen during training. Our model substantially outperforms the baselines,

showing its ability to perform complex multi-hop reasoning, and generalize

from its training data. 112

TABLE 12 : Results for Human Queries (GenX): Our model outperforms LSTM and se-

mantic parsing models on complex human-generated queries, showing it is

robust to work on natural language. Better performance than Tree-LSTM

(Unsup.) shows the efficacy in representing sub-phrases using explicit deno-

tations. Our model also performs better without an external parser, showing

the advantages of latent syntax. 113

TABLE 13 : Implementations of modules for NLVR2 NMN. 126

xiii

LIST OF ILLUSTRATIONS

FIGURE 1 : Example of a question requiring compositional reasoning 2

FIGURE 2 : Framework for compositional reasoning over natural language. The sys-

tem consists of an inventory of learnable neural modules that are designed

to perform various atomic natural language and symbolic reasoning oper-

ations, and a model for decomposing the input task into sub-tasks in terms

of these modules. For a given a natural language utterance (x) describing

a task (e.g., question, instruction), the required modules are dynamically

assembled into a structured model that is executed against the provided

context (e.g., paragraph, knowledge-graph) to predict the output. The feed-

back from end-task supervision can be used to train the modules and the

model for decomposition. We also explore ways to leverage related in-

put utterances (x’ and x”), that share some substructure with the input, to

provide additional indirect feedback to improve learning. 6

FIGURE 3 : Example of natural language utterances in different domains with their

corresponding actions . 10

FIGURE 4 : Example image from the CLEVR dataset containing multiple objects with

different attributes. 25

FIGURE 5 : Example of NMN computation graphs 26

FIGURE 6 : Example prediction of a neural module network trained on the CLEVR

dataset . 28

xiv

FIGURE 7 : Model Overview: Given a question, our model parses it into a program

composed of neural modules. This program is executed against the context

to compute the final answer. The modules operate over soft attention val-

ues (on the question, passage, numbers, and dates). For example, filter

takes as input attention over the question (in the second quarter) and filters

the output of the findmodule by producing an attention mask over tokens

that belong to the second quarter. 31

FIGURE 8 : Effect of auxiliary losses and the size of training data on model perfor-

mance. 49

FIGURE 9 : Example usage of num-compare-lt: For the given question, our model

predicts the program: span(compare-num-lt(find, find)). We show

the question attentions and the predicted passage attentions of the two find

operations using color-coded highlights on the same question and para-

graph (to save space) at the bottom. The number grounding for the two

paragraph attentions predicted in the compare-num-lt module are shown

using the same colors in number-distribution. Since the number associated

to the passage span “45 to 64” is lower (10.3 vs. 15.3), the output of the

compare-num-lt module is “45 to 64” as shown in the passage above. . . 50

FIGURE 10 : An example for a visual reasoning problemwhere both the Basic and Faith-

ful NMNs produce the correct answer. The Basic NMN, however, fails to

give meaningful intermediate outputs for the find and filter modules,

whereas our improved Faithful-NMN assigns correct probabilities in all

cases. Boxes are green if probabilities are as expected, red otherwise. . . 54

FIGURE 11 : An example for a mapping of an utterance to a gold program and a perfect

execution in a reasoning problem from NLVR2 (top) and DROP (bottom). 56

FIGURE 12 : An example of a gold program for NLVR2 that is unnecessarily complicated. 64

xv

FIGURE 13 : Comparison of module outputs between NMN versions: (a) Visual-NMN

with contextualized representations, (b) Visual-NMN with decontextual-

ized representations, (c) model using a parameter-rich count layer (Layer-

Count), (d) Text-NMN trained without sorting module produces an incor-

rect find output (misses 2-yard rushing TD), and (e) Visual-NMN failure

case with a rare object (of w/ Graph-count + decont. + pretraining) . . . 68

FIGURE 14 : Proposed paired objective: For training examples that share substructure,

we propose an additional training objective relating their latent decisions;

S in the shaded gray area. In this figure, g(Xi[m : n])= g(BERT(xi, p)[m :

n]), where BERT(xi, p) is the contextualized representation of xi-th ques-

tion/passage, and [m : n] is its slice for the m through n token. g = find

in all cases. Here, since the outputs of the shared substructures should be

the same, S would encourage equality between them. 73

FIGURE 15 : TemplatedConstruction of Paired Examples: Constructed paired examples

can help in indirectly enforcing consistency between different training ex-

amples (§5.3.2). 77

FIGURE 16 : Utterance x and its program candidates z1-z4, all of which evaluate to the

correct denotation (True). z2 is the correct interpretation; other programs

are spurious. Related utterance x′ shares the phrase yellow object above

a black object with x. Our consistency reward would score z2 the highest

since it maps the shared phrase most similarly compared to z′. 90

FIGURE 17 : Gold program actions for the utterance There is one box with at least 2

yellow squares according to our proposed logical language. The grammar-

constrained decoder outputs a linearized abstract-syntax tree of the pro-

gram in an in-order traversal. 95

xvi

FIGURE 18 : A correct parse for a question given the knowledge graph on the right,

using our model. We show the type for each node, and its denotation in

terms of the knowledge graph. The words or and not are represented by

vectors, which parameterize composition modules. The denotation for the

complete question represents the answer to the question. Nodes here have

typesE for sets of entities,R for relations, V for ungrounded vectors,EV

for a combination of entities and a vector, and ϕ for semantically vacuous

nodes. While we show only one parse tree here, our model builds a parse

chart subsuming all trees. 101

FIGURE 19 : Composition Modules that compose two constituent span representations

into the representation for the combined larger span, using the indicated

equations. 105

xvii

Chapter 1

Introduction

Language is a crucial part of a human being’s life. We use language to perform some of our most im-

portant daily functions. Language facilitates our quest for gathering new knowledge about the world,

expressing our feelings and emotions towards entities and their actions, communicating instructions

to carry out various tasks, among many of our other undertakings. Being such an indispensable fea-

ture of the human experience, it is obvious that any artificially intelligent agent we develop needs to

possess, along with the knowledge of the world, impeccable language understanding capabilities, to

interact with humans and also understand the physical world that is often described using language.

Over the past few decades, significant effort has been put into developing agents that perform vari-

ous tasks that require understanding language. As a community, we have come a long way since the

rule-based systems of the 1950s and 60s (e.g., ELIZA and SHRDLU) to the present day, large-scale,

machine learning based models that aim to learn about our world and language from the 100s of bil-

lions of tokens of text found on the Internet. In these years, our systems’ ability to perform language

related tasks has improved many folds in terms of their accuracy, coverage, and robustness, though,

the goal of achieving human-like language understanding capability still seems as far ahead.

The human capacity to comprehend language, and the world in general, extends far beyond direct

experiences. We are able to reason about novel real-life scenarios and understand never-encountered

1

natural language sentences with utmost ease. This seemingly infinite capability in intelligence (cog-

nition) is best attributed to the principle of compositionality (often attributed toGottlob Frege), which

states that the meaning of a complex expression is determined by the meanings of its constituents and

the rules used to combine them. Human language is highly compositional—by knowing the meaning

of a finite set of words, and having an understanding of the rules that govern how these words can be

combined to form sentences, we are able to understand and produce an infinite number of sentences.

The idea of compositionality extends far beyond language and more generally to our world—by hav-

ing the knowledge about different entities and concepts in the world, and an understanding of the

rules that govern how they combine, we are able to reason about novel scenarios. By decomposing

the world in terms of reusable “building blocks”, we are able to understand novel contexts in terms

of known concepts, and thereby leverage our existing knowledge in near-infinite ways. We believe

that any language understanding systemwe build will also need to perform compositional processing

in order to achieve human-like capabilities. The work described in this dissertation was carried out

with the idea of developing algorithmic approaches that are capable of representing and reasoning

about the compositional nature of our world and language to solve complex language understand-

ing problems. The focus of this dissertation is on the specific application of answering questions

requiring multiple steps of reasoning. However, the techniques developed in this research are more

widely applicable to other language understanding problems.

Figure 1: Example of a question requiring compositional reasoning

2

At the core of solving complex problems in a compositional manner lies two important steps, prob-

lem decomposition into simpler sub-tasks and solving those sub-tasks by using reasoning capabilities

that can be reused in novel contexts. Let us look at examples of complex problems in the context

of language understanding, and the various representational and reasoning capabilities that an AI

agent would require to successfully solve them. Consider the question,Which country had the most

COVID-19 cases by October 2020? in Figure. 1.1 The answer to the question is not stated directly

in the accompanying context, but can be reached by performing a few steps of reasoning. To answer

this, an agent would need to understand the semantics of the question and decompose it into multi-

ple simpler but interrelated problems, find the answer to these sub-problems, and finally compose

these answers to arrive at the answer to the question. In this particular example, an agent would

need to solve the following sub-problems: locate the “countries” mentioned in the context, find the

respective number of “COVID-19 cases by October 2020” for each one of them,2 and compute the

maximum value of cases among these. Solving such sub-problems requires a variety of language

understanding, world knowledge, and symbolic reasoning capabilities. In this example, the system

needs the ability to identify different mentions of “countries” in text (India, United Kingdom, and

United States). It needs to tackle the various linguistic variations in which the number of “COVID-

19 cases by October 2020” for each country is mentioned, in order to perform accurate information

extraction. Lastly, it needs to know that the linguistic quantifier “most” requires performing the

argmax operation and possess symbolic reasoning capability to carry out this operation. Similarly,

consider the question, What was the longest gap between two Radiohead albums?3 which, apart

from challenges similar to the previous question of grounding the phrase “Radiohead albums” to

its corresponding instantiations in text, poses new challenges. The system needs to infer that the

linguistic construction “longest gap” in the context of two albums refers to the maximum time-span,

measured in years, between the release dates of two consecutive Radiohead albums. Further, it needs

to seek the release dates of the various albums to carry out this reasoning. Lastly, consider the utter-

ance, I liked the show, but not as much as Seinfeld—to understand the sentiment expressed towards
1A lot of the work presented in this thesis was conducted during the COVID-19 pandemic. Text snippets are from

Wikipedia.
2This query can be further broken down depending the provided context. We discuss this issue in §8.2.
3The answer is 5; between The King of Limbs (2011) and A Moon Shaped Pool (2016).

3

https://en.wikipedia.org/wiki/Radiohead
https://en.wikipedia.org/wiki/COVID-19_pandemic

the “show”, a system will need to compose the sentiment towards “Seinfeld”, with the phrase “not”

and “as much as”, to reach the conclusion that this show rates lower on the “likeness” scale. In all

the examples we saw, problem decomposition into simpler tasks and composition of their solutions

is a common theme that needs to be addressed by language understanding systems. Also note that,

solving these tasks and their composition requires symbolic operations in many cases.

In order for language understanding systems to truly perform compositional reasoning and system-

atically generalize to novel problem instances in a manner humans do, they also need to reuse their

knowledge and reasoning capabilities in novel contexts. For example, an agent that is able to reason

about the problem instances mentioned above, should also generalize to Which Radiohead album

sold the most records? by reusing its capability to ground the concept “Radiohead albums” and un-

derstand the quantifier expression “most” in this previously unseen context of “albums” and “number

of records sold”. Therefore, for language understanding agents to achieve human-like capabilities,

they need to be able to understand the world and language in terms of parts that can be processed

(almost) independently and recombined in infinite ways.

Given that compositionality is at the core of intelligent behavior, it is surprising that majority of

the NLP community’s recent efforts have largely ignored this issue.4 The two main components of

building language understanding systems—the machine learning models developed for NLP tasks

and the learning paradigm used for training these models—both are not designed in a manner that

promotes compositional processing. Let us look at the most widely used instantiations of both these

components and the issues underlying them.

In the last decade, the NLP community has narrowed down to using large-scale, black-box, neural

network (NN) models for solving complex language understanding tasks. These models are trained

to map raw input text, represented via dense word representations, directly to the output class. The

computational structure of these models is fixed; irrespective of the problem, each input is processed

in exactly the same manner by passing through all layers of the neural network to predict the out-
4There is indeed a long line of work incorporating formal compositional semantics into natural language processing.

We discuss relevant approaches in Chapter 2.

4

put. These models do not perform any explicit problem decomposition and recombination, neither

do they contain any architectural bias to perform such decomposition or identify building blocks of

language understanding that can be reused. They are used on the assumption that this hypothesis

class of universal function approximators will automatically learn to perform the required reasoning

internally in its distributed representations. In this dissertation, we take a contrary view and propose

models with modular architecture, thereby providing explicit inductive bias to process language in

a compositional manner. The modules form the building blocks of the reasoning capability of the

model, and can be dynamically combined depending on the input to perform the required composi-

tional reasoning.

The learning paradigm used to train the models is another important aspect of developing a language

understanding system. The dominant paradigm of learning in NLP has been labeling large quantities

of input-output pairs for an end-task, followed by training an expressive function approximator to

model the statistical regularities between some representation of text and output labels. The resulting

models, evaluated on held-out test data obtained by drawing i.i.d samples from the data collection,

have demonstrated impressive performance across a range of NLP benchmarks. However, it has

been increasingly observed that this i.i.d training and evaluation paradigm is faulty. As a result,

these models have been the subject of scrutiny in many studies testing generalization. Various stud-

ies have shown that our datasets often contain spurious biases—unintended correlations between

input and output—and the expressive NNs exploit these spurious correlations, thus failing to solve

the problems for the right reasons. When these models are evaluated on instances obtained by per-

forming minor input perturbations (Khashabi et al., 2016; Jia and Liang, 2017; Gardner et al., 2020),

or subject to compositional generalization tests—evaluation on instances obtained by composing

observed sub-parts in novel ways—we find that these models show extremely poor generalization

capabilities. We believe that the supervision provided by input-output pairs is not enough to teach

the models about the compositional nature of problems we are trying to solve. We will never be

able to gather as much data that contains a sufficient number of different combinations of sub-parts

to induce the correct decomposition. Additionally, just output supervision does not provide any

direct training signal for what the correct intermediate decisions should be. Given how extremely

5

What is the difference between the highest and the
lowest number of records sales by a Radiohead album?

255 million

num-diff(max-num(find), min-num(find))

find find

max-num min-num

num-diff

How many albums has
Radiohead released?

count(find)

find

count

Which Radiohead album
sold the most records?

…(max-num(find))

find

max-num

…

C
on

te
xt

Feedback

Inventory of Learnable Modules

Indirect Feedback

Decomposition

Natural Language Input (x)

Output

Related Inputs (x’ and x’’)

…

Figure 2: Framework for compositional reasoning over natural language. The system consists of an
inventory of learnable neural modules that are designed to perform various atomic natural language
and symbolic reasoning operations, and a model for decomposing the input task into sub-tasks in
terms of these modules. For a given a natural language utterance (x) describing a task (e.g., question,
instruction), the requiredmodules are dynamically assembled into a structuredmodel that is executed
against the provided context (e.g., paragraph, knowledge-graph) to predict the output. The feedback
from end-task supervision can be used to train the modules and the model for decomposition. We
also explore ways to leverage related input utterances (x’ and x”), that share some substructure with
the input, to provide additional indirect feedback to improve learning.

high-dimensional natural language is, any realistic amount of i.i.d samples will contain spurious cor-

relations, thus containing shortcuts that the models can exploit. We also believe that it is unrealistic

to expect annotations containing stronger supervision signals for learning—in terms of the correct

problem decomposition and the intermediate decisions that the model needs to make. Such annota-

tions are expensive to collect and require experts in many cases. To address these limitations with

the weak training signal provided by end-task supervision, we propose a new training paradigm that

leverages related training examples to provide indirect supervision to the intermediate decisions, and

thus provide stronger cues for learning the correct compositional processing.

1.1 Thesis Statement

The thesis of this research is that solving complex language understanding problems, in a generaliz-

able manner similar to humans, requires decomposition in terms of reusable reasoning capabilities

that can be combined in novel ways. We claim that machine learning models that are composed

6

of loosely decoupled modules can support such compositional understanding of natural language to

solve complex tasks. Additionally, designing learnable modules that can perform various atomic

reasoning tasks in a differentiable manner can yield models that facilitate diverse reasoning capa-

bilities and can be learned from end-task supervision. However, since input-output examples only

provide a weak indirect signal to the model’s intermediate decisions—output of the modules in this

case, such a learning paradigm can yield suboptimal modules that do not generalize to novel contexts.

We further claim that appropriately selected groups of training examples can be simultaneously used

to provide indirect supervision to the model’s intermediate decisions. By applying consistency con-

straints between the model’s intermediate decisions, this paradigm can provide an additional training

signal beyond what is provided by individual examples.

1.2 Outline of this Dissertation

The rest of the document is organized as follows:

• Chapter 2 gives a brief history of different approaches for complex and compositional lan-

guage understanding tasks. We focus on semantic parsing, approaches for question answering

with a focus on reading comprehension, and neural module networks (Andreas et al., 2016).

• Chapter 3 introduces a modular, neuro-symbolic approach for answering complex, compo-

sitional questions against text. We design learnable modules for performing various atomic

natural language and symbolic reasoning tasks (such as arithmetic, sorting, counting), which

in turn can be composed to answer questions requiring multi-step reasoning.

• In Chapter 4 we show that the inductive bias for compositional processing via modular ar-

chitecture is not sufficient to induce correct problem decomposition when such models are

trained via input-output supervision.

• In Chapter 5 we propose a new training paradigm that leverages related instances to provide

indirect supervision to the intermediate decisions that the model needs to make when trying to

solve the problem in a compositional manner. We demonstrate the benefits of this paradigm in

7

the context of question answering against text, and show that it leads to significantly improved

in- and out-of-distribution generalization.

• In Chapter 6 we apply our training paradigm based on related examples to improve seman-

tic parsing in a weakly-supervised setting. We show that enforcing consistency between the

interpretations of similar phrases in related examples leads to better generalization.

• Inspired by formal approaches to semantics, in Chapter 7 we present a fully-grounded question

understanding approach that resembles Montague semantics (Montague, 1973). Each span in

the question is represented by either a denotation in the context (in this case, a knowledge-

graph) or some ungrounded aspect of meaning. Learned composition modules are used to

recursively combine constituent spans, culminating in a grounding for the complete question.

We show that the modules can learn a variety of challenging semantic operators, such as quan-

tifiers, disjunctions and composed relations via end-to-end training.

Finally, Chapter 8 summarizes the contributions of this dissertation and provides an overview of

some future directions. All code, data, and other resources used in this dissertation are available at:

https://nitishgupta.github.io/phd-thesis-resources/

8

https://nitishgupta.github.io/phd-thesis-resources/

Chapter 2

Background

In this chapter, we overview previous approaches in three areas that relate to our work. We first

discuss prior work in the area of semantic parsing. Next, we look approaches for question answering

with a focus on reading comprehension and neural module networks.

2.1 Semantic Parsing

Building systems that understand natural language utterances and produce an appropriate response

has been a long-standing goal of artificial intelligence. Consider the utterances in Figure 3; a system

will require deep understanding of natural language and reasoning capability in order to produce the

correct action. Systems with such capability have useful applications as natural language interfaces

into knowledge graphs, databases, software systems, robots, etc. The area of semantic parsingwithin

NLP aims to develop language understanding systems with such capability.

A semantic parser maps a natural language utterance into a semantic meaning representation called

logical forms. These logical forms can be seen as programs that are executed against the appropriate

context to produce the desired response. The response can be an answer, action, a set of entities in a

knowledge-base, a truth-value, etc. depending on the context. More generally, we will refer to this

response as the denotation of the logical form.

9

Figure 3: Example of natural language utterances in different domains with their corresponding
actions

For example, consider the second utterance in Fig. 3 which would map to the following logical form:

What is the tallest mountain in Europe?

tallest(λx.mountain(x)∧λy.europe(y)∧ isLocated(x, y))

In this example, the logical form can be executed against a database containing geographical facts

to yield the answer.

Semantic parsing is rooted in formal semantics and strongly inherits two insights from it. First,

the idea of compositionality—the meaning of an expression can be recursively determined from the

meaning of its subexpressions (Montague, 1973)—to interpret complex natural language utterances.

Second, the idea of model theory, which states that utterances are mere symbols which only obtain

their meaning or denotation when executed against a context (e.g., database). Semantic parsing

goes beyond other forms of parsing that identify shallow agent-patient roles, such as in semantic

role labeling. Since the parse, the logical form, is executed against a context to yield the denotation,

this form of semantic parsing is sometimes referred to as executable semantic parsing.

Early semantic parsing systems were built using hand-crafted rules to handle complex linguistic

phenomena and integrate syntax, semantics, and reasoning. Early examples include the LUNAR

system - a natural language interface into the moon rocks database (Woods, 1972), and the famous

SHRDLU - a system that could answer questions and perform actions in a toy blocks world envi-

ronment (Winograd, 1972). While these systems were capable of handling complex utterances, due

10

their rule-based nature, they suffered from generalizing beyond the narrow domain they were devel-

oped for and were brittle in handling variations and intricacies of natural language. With the rise of

machine learning in NLP, the paradigm of collecting input-output examples and fitting a statistical

model also influenced the area of semantic parsing. Henceforth, we will focus on statistical method

for semantic parsing.

Statistical semantic parsing has been the dominant approach of building a semantic parser since the

1990s (Zelle and Mooney, 1996; Miller et al., 1996). Though semantic parsing systems have under-

gone several drastic improvements, they roughly still consist of a few key components. One benefi-

cial property of semantic parsing systems has been their modular nature, where different choices of

these components can be used together to yield different semantic parsers. A semantic parser con-

sists of - (1) the semantic representation or the logical language used to represent the meaning and

a grammar to produce candidate derivations, (2) a parsing model that scores different logical forms

corresponding to an utterance based on its learnable parameters, and a parsing algorithm to search

for high scoring programs, and (3) a learning algorithm to estimate the parameters of the model (and

possible rules in the grammar) given training examples. We will go over these components in detail

in the following sections.

2.1.1 Semantic Meaning Representation

Over the years many logical language formalisms have been used in semantic parsing models. The

decision to which language to use is dependent on twomain factors – the ability to execute the logical

form in the required context and the expressivity of the logical language to handle the semantic

phenomena required in the domain.

First-order logic - GeoQuery (Zelle and Mooney, 1996) is a first-order logic based language aug-

mented with higher-order predicates. It is the first formalism to be used in a statistical semantic

parser.

LambdaCalculus - First-order logic augmented with lambda calculus (Carpenter, 1997) is the most

commonly used logical language. Lambda calculus has been used for querying databases (Zettle-

11

moyer and Collins, 2005), in implementing conversational agents (Artzi and Zettlemoyer, 2011), as

well as for providing instructions to robots (Artzi and Zettlemoyer, 2013).

Lambda Dependency-based Compositional Semantics (λ-DCS) is a logic-based formalism intro-

duced by Liang et al. (2011); Liang (2013). It is designed as amore compact representation of lambda

calculus. In this formalism, existential quantification is made implicit, allowing the elimination of

variables. For example, an utterance such as People above the age of 20. would be

Lambda calculus− λx.∃y.AgeGreaterThan(x, y)∧Age(y, 20)

λ-DCS− AgeGreaterThan.Age.20

This formalism has been used in applications such as developing semantic parsers for question-

answering over a knowledge-graph, such as Freebase (Berant et al., 2013), and over semi-structured

tables (Pasupat and Liang, 2015).

Structured Query Language (SQL) is a domain-specific query language used for managing data

stored in a relational database management system (RDBMS). Due to the wide-spread usage of

databases, Text-to-SQL is an ever growing subarea in semantic parsing. Many datasets in a variety

of domains and semantic parsing models have been developed to map natural language statements

into SQL queries.

Programming Languages Similar to SQL, many approaches have looked at converting natural lan-

guage into code written in a high-level general purpose programming language, such as Python (Ling

et al., 2016; Yin and Neubig, 2017) and Java (Iyer et al., 2018).

Functional Query Language Due to the difficulty in handling variables in a logical language

while parsing, variable-free functional query languages have been developed for some domains.

FunQL (Kate et al., 2005) was developed as a variable-free variant of the Geoquery language, Dasigi

et al. (2019) develop a functional language for visual reasoning on the NLVR dataset (Suhr et al.,

2017), Wang et al. (2016) develop a language for a blocks world similar to SHRDLU, etc. As we

will see later in Section 2.3, this formalism is also used in neural module networks.

12

Grammar The grammar in a semantic parsing model is used to define a set of candidate deriva-

tions for a given natural language utterance. In the simplest form, a grammar contains rules that map

the utterance tokens or phrases to the different logical form units it can be mapped to. For example,

10 =⇒ 10 – indicates that the natural language token “10” can map to the constant 10 in the logical

language. Another rule, largest NP[z] =⇒ max(z) indicates that a natural language phrase like

“largest state” can map to a logical form sub-part maximum(state) where maximum is an operation

in the logical language and state is a variable.

Combinatory Categorial Grammar (CCG) has an integrated treatment of syntax and semantics

that makes use of a compositional semantics based on the lambda calculus (Steedman, 2004). CCG

consists of two parts – a CCG lexicon in which words (phrases) are mapped to syntactic types,

and a set of combinatory rules which describe how adjacent syntactic categories in a string can be

recursively combined. Along with a syntactic type, CCG also contains an a semantic type for each

lexical entry when used for semantic parsing. Similarly, combinatory rules are extended to functional

application rules that define how the semantic types can be composed. For example, the following

are two entries in a CCG lexicon for Geoquery:

Utah = NP : utah (2.1)

borders = (S\NP) / NP : λx.λy.borders(y,x) (2.2)

Zettlemoyer and Collins (2005) generalize CCGs to Probabilistic CCGs (PCCGs) which is used to

score different derivations of the same utterance in a statistical semantic parser. CCG as a formalism

is used in many semantic parsing models for various applications (Zettlemoyer and Collins, 2007;

Artzi and Zettlemoyer, 2011; Kwiatkowski et al., 2010, 2011, 2013).

In CCG, the lexical rules can become quite complicated. λ-DCS mitigate this issue by describing

a much crude grammar with very few rules. Secondly, the requirement to have all predicates in the

logical form be anchored to lexical items via the grammar leads to a brittle parser when the grammar

is incomplete in terms of lexical or linguistic variations. To overcome this, floating rules—rules that

can be applied in the absence of any lexical trigger—have been proposed (Berant and Liang, 2014;

13

Pasupat and Liang, 2015). These relaxations definitely lead to a blowup in the space of possible

programs, especially non-sensical ones, but the statistical parser is expected to learn to score such

incorrect derivations poorly.

With the rise of deep learning approaches in semantic parsing the role of a lexicalized grammar

has diminished quite significantly. Semantic parsers no longer require a grammar mapping lexical

items to semantic units to enumerate candidate derivations. Though, recent work has shown that

the grammar of the target language can be useful in decoding only well-formed logical forms which

leads to improved performance. Work on general purpose code generation (such as SQL, Python

etc) leverage the well-defined grammar associated with the programming language by directly gen-

erating the Abstract Syntax Tree corresponding to the query/code. For well-typed domain-specific

languages designed for particular tasks (for example, the language used in Krishnamurthy et al.

(2017)), the type-signature of predicates induces a type-constrained grammar which is used to per-

form grammar-constrained decoding to output well-formed logical forms. We will see this style of

grammar-constrained decoding in detail later in this section.

2.1.2 Parsing models and learning

In this section we will see the two most prominent statistical parsing models used in our community;

feature-based log-linear models and neural network based Seq2Seq models. The idea is, given a

training dataset containing natural language utterances and their corresponding logical forms, to

learn a parsing model to predict the correct logical form for a new test utterance.

Log-linear model Zettlemoyer and Collins (2005) were the first to use a log-linear model to learn

parameters of a Probabilistic CCG (PCCG). It takes as input pairs of natural language utterances and

their meaning representations as lambda-calculus expressions. For example, in the GeoQuery do-

main, What states border Texas? would be mapped to λx.state(x)∧borders(x, texas). Given

a CCG lexixon L, there would be many different parses that conform to the utterance the corre-

sponding logical form. To deal with this ambiguity, the PCCG of Zettlemoyer and Collins (2005)

learns to rank possible parses for an utterance based on the estimated probability of the parse. More

14

concretely, the PCCG is modeled using a log linear model that uses a feature vector f defined over

an (utterance, parse, logical-form) tuple and a parameter vector θ which is used to used a particular

parse. For a given utterance x, parse s and logical expression z, the log linear model is defined as :

P (s, z|x; θ, L) = eθ
T f(x,s,z)∑

(s′,z′) e
θT f(x,s′,z′)

(2.3)

For a given utterance, finding the most likely logical meaning representation z∗ involves performing

the following marginalization over all the latent parses s:

z∗ = argmax
z

P (z|x; θ, L) = argmax
z

∑
s

P (s, z|x; θ, L) (2.4)

Usually, the feature function f decomposes locally over the inputs giving way to perform dynamic

programming using the CKY parsing algorithm yielding an efficient inference methodology. Zettle-

moyer and Collins (2005) induce a CCG lexicon L as a part of the learning procedure. Several

improvements to this basic framework have been proposed. Please see Zettlemoyer and Collins

(2007); Kwiatkowski et al. (2010, 2011, 2013) for further reading.

Sequence-to-Sequence (Seq2Seq)models The introduction of encoder-decoder architectures based

on recurrent neural networks (Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Sutskever et al.,

2014) for machine translation has revolutionized the way many NLP tasks are modeled. This neural

architecture, commonly known as sequence-to-sequence (Seq2Seq), takes as input a natural lan-

guage string in one language and learns to output its translation in the desired language in an end-

to-end manner. This framework has been used to model various NLP tasks as a generic string trans-

duction problem; for example, syntactic parsing (Vinyals et al., 2015a), image captioning (Vinyals

et al., 2015b), text-summarization (Rush et al., 2015), etc. The basic Seq2Seq architecture has been

augmented with neural attention (Bahdanau et al., 2015) to model the latent alignment between the

input and output tokens. This soft attention is computed using a deterministic network which esti-

mates the expected value of the latent alignment variable (Deng et al., 2018), and has proved to be

extremely beneficial in improving performance of Seq2Seq models on various problems.

15

While Wong and Mooney (2006) had proposed treating semantic parsing as a machine translation

(MT) problem, their approach made use of pipelined statistical models for MT to perform semantic

parsing. Dong and Lapata (2016) introduced an end-to-end neural semantic parsing model based on

the Seq2Seq with attention architecture. In their basic model, a neural LSTM encoder encodes the

input utterance as a dense vector representation. This utterance representation is used to condition

the decoder that generates the corresponding logical form in a token-by-token manner. Given an

utterance x = [x1, . . . , xN], the model learns to output a tokenized, linearized representation of the

corresponding logical form z = [z1, . . . , zM]. For example, for What states border Texas? with

the logical form λx.state(x)∧borders(x, texas), the model will learn to produce the following

sequence of logical form tokens: [‘λ’, ‘x’, . . ., ‘x’, ‘,’ ‘texas’, ‘)’]. The decoder performs decoding

in a left-to-right manner and models the probability of the next token based on the representation

of the last decoded token, hidden representation of the LSTM state, and the encoded representation

of the input utterance. The probability for the predicted logical form decomposes as the product of

probabilities of the individual tokens in it, just like any language model:

p(z|x) =
M∏
t=1

p(zt|z<t, x) (2.5)

Here p(zt|z<t, x) is modeled in a standard manner as any Seq2Seq model. Dong and Lapata (2016)

also present a Sequence-to-Tree model to take the hierarchical tree structure of the logical form

into account; the decoder here generates the logical form in a top-down manner. Such architectural

inductive bias provides stronger syntactic cues to themodel which are absent when trained to perform

decoding in a linear manner. Note that this end-to-end framework for parsing provides a significant

departure from previous approaches that needed one to define a feature function over the (utterance,

logical form) combination and mitigates the need to define precise grammars, such as the lexicon

used in CCG. On the other hand, also note that neither of these models ensures that the produced

logical form is syntactically well-formed and executable.

Grammar-constrained decoding The neural semantic parser of Krishnamurthy et al. (2017) uses

an encoder-decoder model where the decoder generates the logical from a grammar instead of out-

16

putting tokens from the logical language without any constraints. Such grammar-constrained decod-

ing guarantees that the parser generates only those logical forms that are well-typed and executatble.

We use this grammar-constrained decoder based semantic parser model in this dissertation (chap-

ters 3, 4, 5, and 6). Though Krishnamurthy et al. (2017) use a λ-calculus language for expressing

logical forms in the WikiTables domain (Pasupat and Liang, 2015), here we describe their grammar-

constrained decoding using a toy example for clarity.

Imagine designing the logical language for the toy task of representing arithmetic expressions, such

as add(2, 3), square(5), etc. This language contains constants, such as numbers 2, 3, 5, etc.

and functions such as add, square etc. Krishnamurthy et al. (2017) prescribe designing the logical

language in amanner such that all constants and functions (or operators, predicates, etc.) are assigned

a type; this allows the decoder to enforce type constraints on the generated logical form. In our

toy logical language, the constant numbers will be assigned the type int, and the functions will

have a higher-order functional type. For example, add will have the functional type ⟨int,int:int⟩,

indicating that add is a function that takes as input two arguments of int type and produces an output

of the int type. Similarly, square will have the functional type ⟨int:int⟩ representing a function

that takes a single int type argument as input, and produces an int type output. The parser then

applies standard programming language type inference algorithms to automatically assign types to

larger expressions. Given the types of constants and predicates, the parser enumerates all possible

production rules to generate a non-terminal literal of a particular type, which is later used to perform

constrained decoding. For example, for this toy logical language, the following production rules are

17

valid:

int → 2

int → 3

int → 5

. . .

⟨int, int : int⟩ → add

⟨int : int⟩ → square

int → [⟨int : int⟩, int]

int → [⟨int, int : int⟩, int, int]

Here, the last production rule defines that an int type literal can be produced using a function with

the type ⟨int,int:int⟩, and two int type inputs.

Given the logical languagewhere all constants and predicates are typed, the parser defines a grammar

consisting of production rules (actions) as shown above. The decoder performs top-down grammar-

constrained decoding, generating the linearized abstract syntax tree (in an in-order traversal) of the

logical form. At any given time-step of decoding, the decoder maintains the logical form with

non-terminals that are yet to be decoded, where the current state defines the actions that are valid.

This ensures that the generated logical forms are well-typed. For example, to produce the program

18

add(2,square(3)), the decoder will generate the following actions:

z1 : start → int

z2 : int → [⟨int, int : int⟩, int, int]

z3 : ⟨int, int : int⟩ → add

z4 : int → 2

z5 : int → [⟨int : int⟩, int]

z6 : ⟨int : int⟩ → square

z7 : int → 3

Krishnamurthy et al. (2017) show that their parser with grammar-constrained decoding significantly

outperforms Seq2Seq and Seq2Tree decoders.

2.1.3 Learning Semantic Parsers from Denotation

The semantic parsing approaches we saw until now rely on annotated training data mapping natural

language utterances to their corresponding logical forms as supervision for learning. Acquiring such

supervision is time consuming and requires expert annotators who understand the formal meaning

representation being used. Also, such annotation restricts the meaning representation that can be

used by the semantic parser. Since in all most all cases these semantic parsers are used as natural

language interfaces, we only care about the output and any restriction on the meaning representation

formalism that can be used limits the capability of the parser.

Over the last few years exciting innovations in learning semantic parsers directly from denotations1

instead of supervised logical forms (Clarke et al., 2010) has lead to increased interest in semantic

parsing. When learning in such a setting, the semantic parse for an utterance is treated as a structured

latent variable which needs to be inferred from the answer supervision. This results in a significantly
1We refer to the response of the logical form after execution as its denotation; see §2.1

19

challenging learning problem since the space of all possible logical forms is exponentially large and

spurious logical forms—logical forms that evaluate to the correct answer but are not the correct

meaning representation of the utterance—provide a noisy training signal to the learner. Typically this

learning framework is called weakly-supervised semantic parsing. In contrast to fully-supervised

semantic parsing we saw in the previous section, here we are provided with a dataset D containing

pairs of natural language utterances and their corresponding denotation {(xi, yi)}i=M
i=1 . Using this

weak supervision, the aim is to learn a semantic parser to map the utterance x to the logical form z

such that z executes to the correct denotation, i.e. JzK = y.

Iterative Structured Learning In the first work that looked at this problem, Clarke et al. (2010)

propose an iterative structured learning framework to learn a semantic parser from weak supervision.

Their approach converts the provided weak supervision in terms of (x, y) pairs into strong supervi-

sion in terms of (x, z) pairs, and by that convert the problem into a structured prediction problem.

Their iterative approach consists of two steps: (1) mining a dataset of (x, z) pairs based on the cur-

rent estimate of the parameters, and (2) using this dataset to update the estimate of the parameters

by employing a standard structured prediction learning algorithm. The iterative training is stopped

when no new (x, z) pairs are generated in step 1. For the semantic parsing model, they use a linear

model (Zettlemoyer and Collins, 2005) to score a (x, z) pair via wTΦ(x, z), where Φ is a feature

function over the input. For a given (x, y) pair, they find the top-scoring ẑ = argmaxwTΦ(x, z) by

running inference, and add (x, ẑ) to the supervised dataset if its execution leads to the correct output,

i.e., JẑK = y. This framework has also been used to learn semantic representations of natural lan-

guage instructions that are aimed at teaching machines about concepts from world feedback instead

of using labeled training examples (Goldwasser and Roth, 2011).

Maximum Marginal Likelihood (MML) Following this, the work of Liang et al. (2011), which

introduced the λ-DCS, also propose learning paradigm for weakly-supervised semantic parsing by

maximizing the marginal log-likelihood (MML) of predicting the correct denotation. The marginal

20

likelihood of the correct denotation for a single instance is

p(y|x) =
∑

z∈Z(x)s.t.JzK=y

p(z|x; θ) (2.6)

which sums over all logical forms z plausible for x (denoted by the set Z(x)) that evaluate to the

correct denotation y. Since enumerating all possible logical forms in Z(x) is computationally in-

feasible, their work resorts to running beam search to gather a set of possible logical forms, and

maximizes the approximate marginal likelihood based on the logical forms in this set. The final

training objective for the approximate MML is

J =
∑
(x,y)

log
∑

z∈Zθ(x)s.t.JzK=y

p(z|x; θ) (2.7)

where Zθ(x) denotes the set of all logical forms for x produced by running beam search. Liang

et al. (2011) places the log-linear distribution over the space of logical forms similar to Zettlemoyer

and Collins (2005). Their approximate MML learning framework has been successfully adopted by

other works in weakly-supervised semantic parsing using floating parsers (Pasupat and Liang, 2015)

and Seq2Seq models (Krishnamurthy et al., 2017).

Reinforcement Learning Weakly supervised semantic parsing has also been looked at from the

lens of reinforcement learning (Liang et al., 2018). Given a training instance (x, y), the agent uses

the policy to take a sequence of actions z = [z1, . . . , zM] and then receives a reward R(z), which

is 1 if z evaluates to the correct denotation (JzK = y) and 0 otherwise. In policy gradient methods,

a stochastic policy function, in this case the semantic parser, is trained to maximize the expected

reward. For a single instance, the expected reward is
∑

z∈Z(x)R(z)p(z|x; θ). Given a dataset of

(x, y) pairs, the final objective is

J =
∑
(x,y)

∑
z∈Z(x)

R(z)p(z|x; θ)

=
∑
(x,y)

∑
z∈Z(x)s.t.JzK=y

p(z|x; θ) (2.8)

21

It can be easily observed that the training objectives for MML (Eq. 2.7) and RL (Eq. 2.8) look very

similar. Guu et al. (2017) perform a very interesting and useful analysis comparing MML and RL,

and conclude that the MML training objective is better in theory and practice.

2.2 Question Answering

In this section we focus our attention on approaches that develop “question answering” (QA)models,

i.e., systems that are capable of answering questions posed in natural language. Question answering

is a very natural manner in which humans acquire knowledge and fill their information needs. Hence,

it is no wonder that the NLP community has taken keen interest in developing question answering

systems. Apart from its use an end-goal application, QA also provides a natural framework for

probing an agent’s understanding of language and the world in general. As a result, QA has been

also been viewed as a way to measure progress in NLP, and AI in general, by many. At this point,

it is important to note that question answering is just a format, instead of a task, in which the input

and output are natural language strings (Gardner et al., 2019). This flexibility has also contributed

to its wide-spread adoption by the community. In some extreme cases, people have pushed for

treating every NLP task as question answering, even classification and translation (Kumar et al.,

2016;McCann et al., 2018). Though, QA only becomes useful as a format for tasks in which question

understanding is a crucial component of the task itself.

It is natural to assume that a system capable of “question answering” will need to deal with a broad

range of language and reasoning phenomena; ideally encompassing all possible phenomena. Such an

ask is unrealistic from our current machine learning models. In its original use in NLP, QA was used

to only refer to the narrow scope of answering factoid questions against a small database (Woods,

1972; Zelle and Mooney, 1996) or answering short, open-domain, factoid questions that a human

might pose to a retrieval system (Voorhees, 1999; Kwok et al., 2001). However, as the NLP systems

have improved in recent times, a wide variety of tasks are being cast as question answering. Though

the scope of question answering has widened from just answering factoid questions, the terminology

has remained with us. Question answering approaches have been developed for a wide variety of

use cases – answering questions against the web as a resource (Voorhees, 1999; Talmor and Berant,

22

2018), a short story (Richardson et al., 2013), knowledge-graphs (Cai and Yates, 2013; Berant et al.,

2013), images (Agrawal et al., 2015), semi-structured tables (Pasupat and Liang, 2015), solving

math word problems (Hosseini et al., 2014; Kushman et al., 2014; Roy and Roth, 2015), answering

scientific questions against text (Khot et al., 2015) or diagrams (Krishnamurthy et al., 2016; Sachan

and Xing, 2017), among many others. Since the main theme in this dissertation is of QA systems

that answer questions against a paragraph of text, in the rest of this section we will only discuss

relevant approaches and datasets.

Reading comprehension (RC) is a task in which an agent is provided with a natural language para-

graph as context, and it is required to answer questions about the paragraph. Such a format allows

for testing the short text comprehension capability of an agent, and is widely used as a benchmark

for testing comprehension capability of students in schools. Richardson et al. (2013) introduced the

Machine Comprehension Test (MCTest) dataset as a way to test the language comprehension capa-

bility of machines, and since then this format has been widely adopted in NLP. Such a format allows

for testing the machine’s capability to understand diverse linguistic phenomena, such as predicate-

argument structure, coreference, discourse, pragmatics, etc., in a unified but relatively controlled

environment. As discussed above, QA is a format is which the reasoning phenomena that a model

might have to deal with has an unbounded scope. As a result, the range of linguistic, semantic, and

world knowledge concepts that the model needs deal with is a function of the training and evaluation

data. For example, the MCTest dataset was carefully designed with short fictional stories restricted

to words and concepts that a 7 year old could understand. Thus, while being open-domain in nature,

a system developed for this data only needs to understand simple world concepts described in simple

language, and does not need to worry about full complexity of the real world. On the other hand,

SQuAD (Rajpurkar et al., 2016), which is the first large-scale RC dataset containing over 100,000

questions, contains paragraphs obtained from Wikipedia on a diverse range of topics. Due to the

semi-automatic method of collecting these paragraphs, there is no guarantee on the complexity of

language and concepts that a model needs to deal with in order to perform well on this dataset. How-

ever, over the years it has been realized that a model only needs to find a relevant sentence in the

passage and perform simple predicate-argument extraction to answer questions in SQuAD. With the

23

rise of data-intensive neural methods, many large-scale reading comprehension datasets have been

developed. They span a wide variety of domains and use-cases; for example, diagnostic datasets to

measure progress in NLP (bAbI; Weston et al., 2016), datasets to answer trivia questions (TriviaQA;

Joshi et al., 2017), questions from middle- and high-school examinations (RACE; Lai et al., 2017),

questions asked by humans as web-search queries (NaturalQuestions; Kwiatkowski et al., 2019), or

datasets containing questions that require complex compositional and symbolic reasoning (DROP;

Dua et al., 2019). In this dissertation, we will apply our techniques and approaches mainly to DROP.

2.2.1 Approaches to Reading Comprehension

Herewewill briefly discuss different approaches to reading comprehension that have been developed

over the years. The factors that influenced the complexity (or expressiveness) of the model depended

on two main factors; (a) the state of the art in NLP at the time, and (b) the complexity of the question,

context text, and output in the dataset for which the approach was developed. Consequently, as for

the rest of NLP, reading comprehension models also saw a change from statistical techniques, to

neural models, to large-scale pre-trained language models that are currently state of the art.

Latent alignment models The initially successful RC models were based on modeling QA infer-

ence procedure via latent alignment between the question, context and candidate answer. One of

the most promising approaches for the MCTest dataset (Richardson et al., 2013) was the answer-

entailing structures proposed by Sachan et al. (2015). It used rhetorical structure theory, and event

and entity coreference to form a semi-structured representation of the context (story), and learned

to form a latent alignment between this representation and a hypothesis statement to score the later.

Different hypothesis statements were constructed by converting the question and different candi-

date answer pairs into a declarative sentence which were scored using the latent alignment. Similar

framework of inference via latent alignment between semi-structured representations of text have

been further explored to answer scientific questions against semi-structured tables (Khashabi et al.,

2016) and paragraphs of natural language text (Khashabi et al., 2018).

24

Neural approaches With the rise of neural methods in NLP, several end-to-end neural-network

based RC models were proposed. These models are called end-to-end since they do not require

intermediate linguistic structures (e.g. entity coreference) during learning and inference. On a high-

level, all these models use RNNs (LSTMs or GRUs) to represent the context and the question, and

differ in the manner they architecture intermediate layers to model complex interaction between the

contextual representations of the context and question words. At the end, an output layer is used

to predict a distribution over the possible answers. For example, distribution over entity mentions

in the context in CNN & DailyMail dataset (Hermann et al., 2015) or distribution over spans in

SQuAD (Rajpurkar et al., 2016). The intermediate layers mainly use the attention mechanism (Bah-

danau et al., 2015) between the question and context in different ways to compute intermediate

representations. Some of the more popular approaches in this realm are BiDAF (Seo et al., 2017),

Attention-over-attention (Cui et al., 2017), and Gated-attention reader (Dhingra et al., 2017).

Large pre-trained Language Models The complete space of NLP has been changed in the last 2-

3 years with the development of large-scale pre-trained language models to get contextualized word

representations. ELMo (Peters et al., 2018) showed that using contextualized word representations

from a pre-trained language model with BiDAF (or other RC architectures) significantly improves

performance as compared to using static pre-trained word embeddings (such as GloVe (Pennington

et al., 2014)). Since then, even larger pre-trained models for contextualized text representations,

such as BERT (Devlin et al., 2019), BART (Lewis et al., 2020), T5 (Raffel et al., 2020), etc., have

shown further significant improvements in many language understanding tasks, RC included. These

are different from ELMo in that the same model architecture can be used for many different tasks;

the only architectural change is the thin output layer that takes as input the contextualized word

representations and produces a distribution over the output support (e.g., answer candidates in RC,

topics is document classification, etc.). For example, when using BERT as a RC model for SQuAD,

the output layer has a single feed-forward layer to convert the contextualized word representations

into two distributions over the tokens, each representing the probability of the token being the start

or end point of the span answer.

25

2.3 Neural Module Networks

In most RC datasets, the questions that have been tackled are simple, in the sense, usually involve

selecting the retrieving a relevant sentence from the passage, and extracting its predicate-argument

structure to find the answer. Now, consider the image in Figure 42 and the question What is the

color of the sphere? - this is analogous to the RC question in the sense that it requires finding

a relevant sub-part in the context (sphere) and determining one of its argument (color). Consider

another question, What color is the thing with the same size as the blue cylinder? - this question

is more complex than the previous one and requires multiple steps of reasoning: finding the blue

cylinder, determining its size, finding the other object with the same size, and finally determining

the color of this object. The exact computation required to answer such compositional questions is

dependent on the question itself, something which the standard fixed neural network architecture

approach does not account for. On the other hand, semantic parsing models are designed to handle

exactly this kind of compositionality in computation, but the output logical forms can be executed

on structured knowledge sources.

Figure 4: Example image from the CLEVR dataset containing multiple objects with different at-
tributes.

Neural module networks (NMNs; Andreas et al., 2016) is a class of models that combines the com-

positional nature of logical meaning representations and the expressive power of neural networks to

answer complex, compositional questions against unstructured contexts, such as images and natural
2Image from the CLEVR dataset (Johnson et al., 2017)

26

language. Just like semantic parsing, the idea in NMNs is to parse a given question into a logical

meaning representation that defines the computation required to answer the question. The differ-

ence here is that, the logical form (or program) needs to be executed against an unstructured context

to reach the denotation. The logical language used in NMNs, i.e., the set of predicates/functions

used to produce programs are usually defined by the user in a variable-free language depending on

the domain for which the NMN is being developed. Typically, these predicates are the basic oper-

ations required in the domain and can be combined to perform complex reasoning. For example,

What color is the thing with the same size as the blue cylinder? will be parsed into the program

color(same-size(find[blue cylinder]))where the program is composed of three basic operations

- findwhich locates the blue cylinder, same-size that locates the object of the same size as the blue

cylinder, and color which determines the color of the object located in the previous step.

Modules In contrast to standard semantic parsing, where the program is executed against a struc-

tured knowledge base, in NMNs, the program is executed against an unstructured knowledge source.

Therefore, the execution of functions in a NMN cannot be hard-coded a priori in the same manner

as standard semantic parsing. For example, the execution of the predicate isState(s) to check if

the atom s in a knowledge-graph is a state or not can be hard-coded, but the execution of a predi-

cate find to find the blue cylinder in an image cannot be pre-coded. NMNs propose to implement

the execution of these predicates as independent neural networks, called modules, to leverage the

representation power of neural networks. Therefore, the program that the question gets parsed into,

defines the structure in which the relevant modules are arranged to solve the question.

Consider the two question in Figure 53 - their respective programs arrange the relevant modules

in the required manner and effectively form different networks to solve the questions. Since the

compare-size module is shared between the programs, those parameters would be shared in the

final network.

Learning A neural module network is built with two components, both containing learnable pa-

rameters - (1) a semantic parser that models p(z|x; θz), the distribution over programs for a given
3Figure from https://bair.berkeley.edu/blog/2017/06/20/learning-to-reason-with-neural-module-networks/

27

https://bair.berkeley.edu/blog/2017/06/20/learning-to-reason-with-neural-module-networks/

Figure 5: Example of NMN computation graphs

question x, and (2) an execution model that models p(y|x, z; θm), the distribution over answer can-

didates for the given program z. The parameters of the execution model θm are the parameters of

all the modules combined, though, only the parameters of the modules occurring in z take part in

modeling the answer distribution for a given question.

Given weak supervision in terms of (question, answer) pairs, the idea in NMNs is to jointly learn

the parameters of the parser and the modules. Via marginalizing over all possible programs, we can

write

p(y|x; θz, θm) =
∑
z

p(z|x; θz) ∗ p(y|x, z; θm) (2.9)

We need to optimize for two sets of parameters, θz and θm. Optimizing for the parameters of

the parser θz is similar to weakly-supervised semantic parsing only that the reward R(z) now is

p(y|x, z; θm). The original NMN work (Andreas et al., 2016) and subsequent followups (Hu et al.,

2017) use policy-gradients, specifically the REINFORCE algorithm (Williams, 1992), to carry out

this optimization. Optimizing for the module parameters θm can be done via backpropagation since

the neural modules compose to result in a differentiable network, just like any standard neural net-

work. See Andreas et al. (2016) for details.

28

Figure 6: Example prediction of a neural module network trained on the CLEVR dataset

Benefits of NMNs A NMN has an explicit structural bias towards solving a problem in a com-

positional manner, and hence, is well suited for problems which can be decomposed into simpler

problems whose solution can be combined to reach the final output. Such compositional structural

bias is also expected to generalize better to novel problem instances that are new compositions of

basic concepts observed in training. The separation of model parameters into modules, the use of

only relevant modules when solving a problem, and explicit sharing of parameters when solving

similar sub-problems (via reusing modules), all should lead to better sample complexity while learn-

ing. Also, the explicit parsing of the question into a logical program and the intermediate outputs

of the modules during execution, both offer a great deal of interpretability in the model’s decision

making process. In Figure 6 (from Hu et al. (2017)) we see an example of the level of interpretability

provided by a NMN.

29

Chapter 3

Neural Module Networks for Reasoning

over Text

This chapter presents a modular approach to answer complex, compositional questions against a

paragraph of text. Developing such a model poses significant challenges of understanding the ques-

tion semantics, extracting various information from the provided passage, and performing symbolic

reasoning to compose the extracted information in the required manner. Inspired by semantic pars-

ing and neural module networks (NMNs; Andreas et al., 2016), our proposed model is modular in

nature which provides the required architectural bias to perform question decomposition and reason-

ing in a compositional manner. We design learnable neural modules to perform atomic language

understanding and symbolic reasoning tasks, that can be combined to perform multi-step reason-

ing. These modules are designed in a differentiable manner to maintain end-to-end differentiability

which allows us to train this model via backpropagation using just question-answer supervision. This

chapter is based on work originally described in Gupta et al. (2020a).

30

3.1 Introduction

Consider the question Who kicked the longest field goal in the second quarter? in Figure 7. Mul-

tiple reasoning steps are needed to answer such a question: find all instances of “field goal” in the

paragraph, select the ones “in the second quarter”, find their lengths, compute the “longest” of them,

and then find “who kicked” it. We would like to develop machine reading models that are capable

of understanding the context and the compositional semantics of such complex questions in order to

provide the correct answer, ideally while also explaining the reasoning that led to that answer.

Semantic parsing techniques, which map natural language utterances to executable programs, have

been used for compositional question understanding for a long time (Zelle andMooney, 1996; Zettle-

moyer and Collins, 2005; Liang et al., 2011), but have been limited to answering questions against

structured and semi-structured knowledge sources. Neural module networks (NMNs; Andreas et al.,

2016) extend semantic parsers by making the program executor a learned function composed of neu-

ral network modules. NMNs perform well on synthetic visual question answering (VQA) domains

such as CLEVR (Johnson et al., 2017) and it is appealing to apply them to answer questions over text

due to their interpretable, modular, and inherently compositional nature. However, it is non-trivial

to extend NMNs for answering non-synthetic questions against open-domain text, where a model

needs to deal with the ambiguity and variability of real-world text while performing a diverse range

of reasoning.

In this chapter we extend NMNs to answer compositional questions against a paragraph of text as

context. We introduce neural modules to perform atomic language understanding operations over

text using distributed representations, and perform symbolic reasoning, such as arithmetic, sorting,

comparisons, and counting. The modules we define are probabilistic and differentiable, which lets

us maintain uncertainty about intermediate decisions and train the entire model via end-to-end dif-

ferentiability.

The model needs to correctly make multiple intermediate decisions to arrive at the answer which is

challenging to learn only using end-task QA supervision. We show that these challenges can be alle-

31

Figure 7: Model Overview: Given a question, our model parses it into a program composed of neural
modules. This program is executed against the context to compute the final answer. The modules
operate over soft attention values (on the question, passage, numbers, and dates). For example,
filter takes as input attention over the question (in the second quarter) and filters the output of the
find module by producing an attention mask over tokens that belong to the second quarter.

viated with auxiliary objectives over the intermediate latent decisions of the model. Specifically, we

introduce an unsupervised objective that provides an inductive bias to perform accurate information

extraction from the context. Additionally, we show that providing heuristically-obtained supervi-

sion for question programs and outputs for intermediate modules in a program for a small subset of

the training data (5–10%) is sufficient for accurate learning. Experiment on the DROP dataset (Dua

et al., 2019) demonstrates the feasibility of our approach.

3.2 Overview of Approach

Our goal is to develop a question-answering model that given a question q against a paragraph p

predicts the correct answer y. The answer in our case can be a span of text from the passage or a

number. We extend NMNs to perform question answering against text. A NMN is composed of

two main components; a semantic parser to map the question q into a logical meaning representa-

tion or program z, and an executor made up of modules to execute this program z against some

representation of the context p to arrive at the answer y.

Consider the question “Who kicked the longest field goal in the second quarter?” in Figure 7. Our

NMN would parse this question into an executable program, such as,

extract-argument(find-max-num(filter(find()))) (3.1)

32

whose execution against the given paragraph yields the answer. These programs capture the ab-

stract compositional reasoning structure required to answer the question correctly and are composed

of learnable modules designed to solve sufficiently independent reasoning tasks. For example, the

find module should ground the question span “field goal” to its various occurrences in the para-

graph; the module find-max-num should output the span amongst its input that is associated with

the largest length; and finally, the extract-argument module should find “who kicked” the field

goal corresponding to its input span.

3.2.1 Components of a NMN for Text

Modules To perform natural language and symbolic reasoning operations over different types of

information, such as text, numbers, and dates, we define a diverse set of differentiable modules to

operate over these different data types. We describe these modules and the data types in §3.3.

Contextual Token Representations Our model represents the question q as Q ∈ Rn×d and the

context paragraph p as P ∈ Rm×d using contextualized token embeddings. These are outputs of

either the same bidirectional-GRU or a pre-trained BERT (Devlin et al., 2019) model. Here n andm

are the number of tokens in the question and the paragraph, respectively, and d is the dimensionality

of the embeddings.

Question Parser We use an encoder-decoder model with attention to map the question into an

executable program. Similar to end-to-end NMN (N2NMN; Hu et al., 2017), at each timestep of

decoding, the attention that the parser puts on the question is available as a side argument to the

module produced at that timestep during execution. This lets the modules have access to question

information without making hard decisions about which question words to put into the program.

In our model, the data types of the inputs and output of modules automatically induce a type-

constrained grammar which lends itself to top-down grammar-constrained decoding as performed by

Krishnamurthy et al. (2017). This ensures that the decoder always produces well-typed programs.

For example, if a module f1 inputs a number, and f2 outputs a date, then f1(f2) is invalid and

33

would not be explored while decoding. The output of the decoder is a linearized abstract syntax

tree (in an in-order traversal). Please refer to the background chapter (§2.1.2) for details about the

grammar-constrained decoder.

Learning We define our model probabilistically, i.e., for any given program z, we can compute

the likelihood of the gold-answer p(y∗|z). Combined with the likelihood of the program under the

question-parser model p(z|q), we can maximize the marginal likelihood of the answer by enumerat-

ing all possible programs.

J =
∑
z

p(y∗|z)p(z|q) (3.2)

Since the space of all programs is intractable, we run beam search to enumerate top-K programs

and maximize the approximate marginal-likelihood. Owing to type-constrained decoding, given the

gold answer, we only explore programs that would yield an answer of the gold type. For example,

if the answer is a number, we do not search for programs that would yield a string answer, i.e., we

only search for programs in which the outermost function returns a number-type output.

3.2.2 Learning Challenges in NMN for Text

As mentioned above, the question parser and the program executor both contain learnable parame-

ters. Each of them is challenging to learn in its own right and joint training further exacerbates the

situation.

Question Parser Ourmodel needs to parse free-form real-world questions into the correct program

structure and identify its arguments (e.g., “who kicked”, “field goal”, etc.). This is challenging

since the questions are not generated from a small fixed grammar (unlike CLEVR), involve lexical

variability, and have no program supervision. Additionally, many incorrect programs can yield the

same correct answer thus training the question parser to highly score incorrect interpretations. Such

an incorrect training signal is adversarial in nature for the question parser.

Program Executor The output of each intermediate module in the program is a latent decision

by the model since the only feedback available is for the final output of the program. The absence

34

of any direct feedback to the intermediate modules complicates learning since the errors of one

module would be passed on to the next. Differentiable modules that propagate uncertainties in

intermediate decisions help here, such as attention on pixels in CLEVR, but do not fully solve the

learning challenges.

Joint Learning Jointly training the parser and executor increases the latent choices available to

the model by many folds while the only supervision available is the gold answer. Specifically, for

each program in the program search space, there are multiple intermediate module outputs that are

possible that will yield the correct answer. Among this large space of latent configurations, only one

(ideally) is correct but discovering the correct program and intermediate outputs is a hard learning

challenge. Additionally, joint learning is challenging as prediction errors from one component will

provide incorrect training signal to the other component, in turn leading to incorrect feedback from

that component to the first. This forms a cycle of incorrect feedback that hurts learning. E.g., if

the parser predicts the program extract-argument(find()) for the question in Fig. 7, then the

associated modules would be incorrectly trained to predict the gold answer. On the next iteration,

incorrect program execution would provide the wrong feedback to the question parser and lead to

its incorrect training, and learning fails.

3.3 Modules for Reasoning over Text

Modules are designed to perform basic independent reasoning tasks and form the basis of the compo-

sitional reasoning that the model is capable of. We identify a set of tasks that need to be performed to

support diverse enough reasoning capabilities over text, numbers, and dates, and define modules ac-

cordingly. Since the module parameters will be learned jointly with the rest of the model, we would

like the modules to maintain uncertainties about their decisions and propagate them through the de-

cision making layers via end-to-end differentiability. One of our main contributions is introducing

differentiable modules that perform reasoning over text and symbols in a probabilistic manner.

We first discuss how we make our design choices for the modules to use and the data types they

operate over. Then, we present the specifics of the data types and their respective representations on

35

which our modules operate. Finally, we describe the various modules and how they are implemented.

Table 1 gives an overview of the representative modules in our model.

3.3.1 Design Choices for Modules and Data Types

We perform manual analysis of around 200 questions from the dataset we work with (DROP; Dua

et al., 2019) and identify their decomposition in terms of basic reasoning tasks that need to be per-

formed to answer these questions. These basic tasks guide our choice of modules to define, which

are typed-functions that operate over text, numbers, and dates. The idea is that the composition of

these modules should support diverse reasoning capabilities required to answer the questions. The

format of input and output required by the modules guides our choice of the data-types to define.

Using few questions as motivating examples, let us look at some of the basic tasks we identify and

a high-level sketch of the corresponding modules. Consider the questions, Q1: What happened

last, commission being granted to Robert or death of his cousin?, Q2: Who scored the longest field

goal?, Q3: How many touchdowns were scored in the third quarter?, and Q4: Were there more of

cultivators or main agricultural labourers in Sweden?.

1. The most common task associated to all questions is grounding a question span (e.g., concept,

entity, event) to relevant span(s) in the associated paragraph. For example, finding the men-

tion(s) of events like touchdowns, field goals, commission being granted to Robert, etc. and

grounding to the mention(s) of entities like cultivators, main agricultural labourers, etc. in

the paragraph. To perform this task we need to define a module, say find, with a signature

like find(question-span)→ Set[passage-span], to output the set of passage spans found

relevant to the input question span.

2. Consider question Q3 where after finding the set of touchdown mentions, this set needs to be

pruned to the ones scored in the third quarter. For a filtering task like such, where a set of

mentions needs to be pruned based on a condition specified in the question, we define amodule

with a signature filter(Set[passage-span], question-span)→ Set[passage-span].

36

3. Another common basic task that is required for almost all questions is extracting an argument

(string, number, or date) associated to the entity/event(s) being queried about in the question.

For example the following arguments need to be extracted in the questions above—Q1: the

date when the two events in the question took place,Q2: the length (number) associated with

each field goal and the who scored argument associated to the longest field goal, and Q4: the

number of cultivators and main agricultural labourers mentioned in the paragraph. For such

operations, we define three modules:

extract-argument(Set[passage-span], question-span)→ Set[passage-span],

find-num(Set[passage-span])→ Set[number], and

find-date(Set[passage-span])→ Set[date].

4. Other common basic tasks we identify require discrete symbolic operations; such as, comput-

ing the maximum/minimum number among a set of numbers (e.g., for finding the longest field

goal in Q2), comparing two numbers/dates and checking which one is smaller/greater (e.g.,

comparing dates and numbers in Q1 and Q4, respectively), and counting the set of relevant

passage spans that are identified (e.g., in Q3).

3.3.2 Discrete vs. Continuous Representations

In the previous section we saw that the modules need to operate over inputs and outputs of various

types—e.g., question-span, Set[passage-span], Set[number] and Set[date]. Also, note that

the modules are functions with learnable parameters initialized from scratch; they are expected to

learn their intended task behavior from end-task supervision. Since all modules are trained jointly,

we would like to maintain uncertainties in a module’s predictions and propagate them through the

decision making process to aid module parameter learning from end-task supervision. Therefore,

we need to represent the values that the different data types can take in a probabilistic manner. We

also need to be able to perform discrete operations, such as min/max, count and comparisons, in a

probabilistic manner. To facilitate these requirements in a computationally efficient manner, there

are certain design decisions that need to be taken in terms of how to represent values of the data

types and how to design modules. We will discuss these issues in this section.

37

Let us first consider the option of a discrete probabilistic representation for values of the data types.

Consider the type Set[passage-span] – a paragraph with T tokens will contain a total number of
T (T+1)

2 or O(T 2) spans. Even if we consider spans with a maximum length L, the total number of

spans are L · T . For a passage of length T = 500 and with L = 20, the total number of spans is

still quite a large number, L · T = 10000. Representing a discrete distribution over the power-set

of these spans as the underlying sample space is computationally expensive; the size of this space

O(2L·T) is exponential in nature.

Further, such a discrete representation also introduces combinatorial search issues while training

when used in conjunction with discrete operations, especially in the absence of any supervision for

the output of the modules. For example, no supervision for the set of passage-spans that should be

output by a find module operations. Consider a program, max(find-num), where the find-num

outputs a discrete distribution over the power set of all numbers present in the passage, and max

outputs the maximum value in any particular set of numbers input to it. Given the gold output of

this program, let’s say a single number x that should be output after the max operation, based on this

feedback we will like to improve the model’s estimate of the underlying distribution that is output

by the find-num operation. Now, since the maxmodule operates on a discrete distribution over sets,

we will need to enumerate all sets for which the max module can yield the output x, i.e., all possible

sets that contain the number x, and update the distribution accordingly. A similar issue will occur

in a program like count(find) where find outputs a discrete distribution over the power set of all

possible passage spans and the only feedback available is the size of gold set that should be output by

find. Therefore, due to the issues of exponential space and search complexity, we cannot represent

data type values as discrete probability distributions.

One way to mitigate this issue is to represent data type values as compact continuous-value distribu-

tions. Further, by performing discrete operations in a continuous and differentiable manner, we will

be able to directly pass gradients to the underlying input distribution without incurring combinatorial

search costs. To handle the issue of exponential size of the power set of a set of instances, we instead

represent sets as a probability distribution over the underlying instances. By doing so, we reduce the

38

space complexity of representing distributions over power sets fromO(2|S|) to O(|S|) where |S| is

the number of underlying instances. All discrete and continuous operations are then conducted over

this surrogate representation of sets. For example, to represent Set[passage-span], we model a

distribution over passage tokens where the idea is that a contiguous span of high probability values is

indicative of a potential span. Using such a representation, we are able to probabilistically represent

values of the type Set[passage-span] with a vector of size O(T) instead of O(2L·T).

One drawback of using continuous probabilistic representations for inherently discrete data types is

the need to define ways to perform discrete operations in a continuous and differentiable manner. In

this work, we are able to define analytical solutions to perform operations like minimum/maximum

and comparisons in a differentiable manner. On the other hand, we needed to define modules with

learnable parameters to perform operations like counting the number of underlying spans and fig-

uring out discrete spans from a continuous distribution over tokens. We give details about the data

types, their representations, and the modules in the subsequent sections.

Module In Out Task

find Q P For question spans in the input, find similar spans in the passage
filter Q, P P Based on the question, select a subset of spans from the input
extract-argument Q, P P Find the argument asked for in the question for input paragraph spans
find-num P N }

Find the number(s) / date(s) associated to the input paragraph spansfind-date P D
count P C Count the number of input passage spans
compare-num-lt P, P P Output the span associated with the smaller number.
time-diff P, P TD Difference between the dates associated with the paragraph spans
find-max-num P P Select the span that is associated with the largest number
span P S Identify a contiguous span from the attended tokens

Table 1: Description of the modules we define and their expected behaviour. All inputs and outputs
are represented as distributions over tokens, numbers, and dates as described in §3.3.3.

3.3.3 Data Types

The modules operate over the following data types. Each data type represents its underlying value

as a normalized distribution over the relevant support.

• Question (Q) and Paragraph (P) attentions: soft subsets of relevant tokens in the text.

• Number (N) and Date (D): soft subset of unique numbers and dates from the passage.

39

We pre-process the paragraphs to extract the numbers and dates in them. For numbers, we

use a simple strategy where all tokens in the paragraph that can be parsed as a number are

extracted. For example, 200 in “200 women”. The total number of number-tokens in the

paragraph is denoted byNtokens. We do not normalize numbers based on their units and leave

it for future work.

To extract dates from the paragraph, we run the spaCy-NER1 and collect all DATE mentions.

To normalize the date mentions we use an off-the-shelf date-parser2. For example, a date

mention “19th November, 1961” would be normalized to (19, 11, 1961) (day, month, year).

The total number of date-tokens is denoted by Dtokens.

• Count Number (C): count value as a distribution over the supported count values (0− 9).

• Time Delta (TD): a value amongst all possible unique differences between dates in the para-

graph. In this work, we consider differences in terms of years.

• Span (S): span-type answers as two probability values (start/end) for each paragraph token.

3.3.4 Neural Modules for Question Answering

The question and paragraph contextualized embeddings (Q and P) are available as global variables

to all modules in the program. The question attention computed by the decoder during the timestep

the module was produced is also available to the module as a side argument, as described in §3.2.1.

find(Q) → P This module is used to ground attended question tokens to similar tokens in the

paragraph (e.g., “field goal” in Figure 7). We use a question-to-paragraph attention matrix A ∈

Rn×m whose i-th row is the distribution of similarity over the paragraph tokens for the i-th question

token. The output is an expected paragraph attention; a weighted-sum of the rows of A, weighed by

the input question attention.

P =
∑
i

Qi · Ai: ∈ Rm

A is computed by normalizing (using softmax) the rows of a question-to-paragraph similarity matrix

S ∈ Rn×m. Here Sij is the similarity between the contextual embeddings of the i-th question token
1https://spacy.io/
2https://github.com/scrapinghub/dateparser

40

and the j-th paragraph token computed as,

Sij = wf
T [Qi: ;Pj: ;Qi: ◦ Pj:]

where wf ∈ R3d is a learnable parameter vector of this module, [;] denotes the concatenation opera-

tion, and ◦ is element-wise multiplication.

filter(Q, P)→ P This module masks the input paragraph attention conditioned on the question,

selecting a subset of the attended paragraph (e.g., selecting fields goals “in the second quarter” in

Fig. 7). We compute a locally-normalized paragraph-token maskM ∈ Rm whereMj is the masking

score for the j-th paragraph token computed as

Mj = σ(wfilter
T [q ;Pj: ;q ◦ Pj:])

Here q =
∑

iQi · Qi: ∈ Rd, is a weighted sum of question-token embeddings, wfilter
T ∈ R3d is a

learnable parameter vector, and σ is the sigmoid non-linearity function. The output is a normalized

masked input paragraph attention, Pfiltered = normalize(M ◦ P).

extract-argument(Q, P) → P This module re-attends to the paragraph based on the question

and is used to find the arguments for paragraph spans (e.g., shifting the attention from “field goals”

to “who kicked” them). We first compute a paragraph-to-paragraph attention matrix R ∈ Rm×m

based on the question, as

Rij = wrelocate
T [(q+ Pi:) ;Pj: ; (q+ Pi:) ◦ Pj:]

where q =
∑

iQi ·Qi: ∈ Rd, and wrelocate ∈ R3d is a learnable parameter vector. Each row of R is

also normalized using the softmax operation. The output attention is a weighted sum of the rows R

weighted by the input paragraph attention, Prelocated =
∑

i Pi · Ri:

41

find-num(P) → N This module finds a number distribution associated with the input paragraph

attention. We use a paragraph token-to-number-token attention map Anum ∈ Rm×Ntokens whose i-th

row is probability distribution over number-containing tokens for the i-th paragraph token. We first

compute a token-to-number similarity matrix Snum ∈ Rm×Ntokens as,

Snumberi,j = PT
i:WnumberPnj :

where nj is the index of the j-th number token andWnum ∈ Rd×d is a learnable parameter. Normal-

izing the rows of Snumber using softmax yields Anumber, Anum
i: = softmax(Snumi:). We compute an

expected distribution over the number tokens T =
∑

i Pi ·Anum
i: and aggregate the probabilities for

number-tokens with the same value to compute the output distributionN . For example, if the values

of the number-tokens are [2, 2, 3, 4] and T = [0.1, 0.4, 0.3, 0.2], the output will be a distribution

over {2, 3, 4} with N = [0.5, 0.3, 0.2].

find-date(P) → D follows the same process as above to compute a distribution over dates for

the input paragraph attention. The corresponding learnable parameter matrix isWdate ∈ Rd×d.

count(P) → C This module is used to count the number of attended paragraph spans. The idea

is to learn a module that detects contiguous spans of attention values and counts each as one. For

example, if an attention vector is [0, 0, 0.3, 0.3, 0, 0.4], the count module should produce an out-

put of 2. The module first scales the attention using the values [1, 2, 5, 10] to convert it into a

matrix Pscaled ∈ Rm×4. A bidirectional-GRU then represents each token attention as a hidden

vector ht. A single-layer feed-forward network maps this representation to a soft 0/1 score to in-

dicate the presence of a span surrounding it. These scores are summed to compute a count value,

cv =
∑
σ (FF (countGRU(Pscaled))) ∈ R. We hypothesize that the output count value is normally

distributed with cv as mean, and a constant variance v = 0.5, and compute a categorical distribution

over the supported count values, as p(c) ∝ exp(−(c−cv)2/2v2) ∀c ∈ [0, 9]. We find that training the

count module is challenging and pre-training the parameters of the count module helps.

Pretraining count module: We generate synthetic data to pre-train this module; each instance is a

42

normalized-attention vector x = Rm and a count value y ∈ [0, 9]. This is generated by samplingm

uniformly between 200 − 600, then sampling a count value y uniformly in [0, 9]. We then sample

y span-lengths between 5 − 15 and also sample y non-overlapping span-positions in the attention

vector x. For all these y spans in x, we put a value of 1.0 and zeros everywhere else. We then add

0-mean, 0.01-variance gaussian noise to all elements in x and normalize to make the normalized

attention vector that can be input to the count module. We train the parameters of the count module

using these generated instances using L2-loss between the true count value and the predicted cv.

compare-num-lt(P1, P2) → P This module performs a soft less-than operation between two

passage distributions. For example, to find the city with fewer people, cityA or cityB, the module

would output a linear combination of the two input attentions weighted by which city was associated

with a lower number. This module internally calls the find-nummodule to get a number distribution

for each of the input paragraph attentions, N1 and N2. It then computes two soft boolean values,

p(N1 < N2) and p(N2 < N1), and outputs a weighted sum of the input paragraph attentions. The

boolean values are computed by marginalizing the relevant joint probabilities:

p(N1 < N2) =
∑
i

∑
j

1
N i

1<Nj
2
N i

1N
j
2 p(N2 < N1) =

∑
i

∑
j

1
N i

2<Nj
1
N i

2N
j
1

The final output is:

Pout = p(N1 < N2) ∗ P1 + p(N2 < N1) ∗ P2

When the the predicted number distributions are peaky, p(N1 < N2) or p(N2 < N1) is close to 1,

and the output is either P1 or P2.

We similarly include the comparisonmodules compare-num-gt, compare-date-lt, and compare-date-gt,

defined in an essentially identical manner, but for greater-than and for dates.

time-diff(P1, P2)→ TD The module outputs the difference between the dates associated with

the two paragraph attentions as a distribution over all possible difference values. The module in-

ternally calls the find-date module to get a date distribution for the two paragraph attentions, D1

43

and D2. The probability of the difference being td is computed by marginalizing over the joint

probability for the dates that yield this value, as

p(td) =
∑
i,j

1(di−dj=td)D
i
1D

j
2

In this work, date differences are computed as a difference between their year values.

find-max-num(P) → P, find-min-num(P) → P Given a passage attention attending to multiple

spans, this module outputs an attention for the span associated with the largest (or smallest) number.

We first compute an expected number token distribution T using find-num, then use this to compute

the expected probability that each number token is the one with the maximum value, Tmax ∈ RNtokens

(explained below). We then re-distribute this distribution back to the original passage tokens associ-

ated with those numbers. The contribution from the i-th paragraph token to the j-th number token,

Tj , was Pi · Anum
ij . To compute the new attention value for token i, we re-weight this contribution

based on the ratio Tmax
j /Tj and marginalize across the number tokens to get the new token attention

value:

P̄i =
∑
j

Tmax
j /Tj · Pi · Anum

ij

Computing Tmax: Consider a distribution over numbers N , sorted in an increasing order. Say we

sample a set S (size n) of numbers from this distribution. The probability that Nj is the largest

number in this set is p(x ≤ Nj)
n− p(x ≤ Nj−1)

n i.e. all numbers in S are less than or equal toNj ,

and at least one number isNj . By picking the set size n = 3 as a hyperparameter, we can analytically

(and differentiably) convert the expected distribution over number tokens, T , into a distribution over

the maximum value Tmax.

span(P) → S This module is used to convert a paragraph attention into a contiguous answer

span and only appears as the outermost module in a program. The module outputs two probability

distributions, Ps and Pe ∈ Rm, denoting the probability of a token being the start and end of a

span, respectively. This module is implemented similar to the count module. The input paragraph

44

attention is first scaled using [1, 2, 5, 10], then a bidirectional-GRU represents each attention as a

hidden vector, and a single-layer feed-forward network maps this to 2 scores, for span start and end.

A softmax operation on these scores gives the output probabilities.

3.4 Auxiliary Supervision

Asmentioned in §3.2.2, jointly learning the parameters of the parser and the modules using only end-

task QA supervision is extremely challenging. To overcome issues in learning, (a) we introduce an

unsupervised auxiliary loss to provide an inductive bias to the execution of find-num, find-date,

and relocatemodules; and (b) provide heuristically-obtained supervision for question program and

intermediate module output for a subset of questions (5–10%).

3.4.1 Unsupervised Auxiliary Loss for IE

The find-num, find-date, and extract-argument modules perform information extraction by

finding relevant arguments for entities and eventsmentioned in the context. In our initial experiments

we found that these modules would often spuriously predict a high attention score for output tokens

that appear far away from their corresponding inputs. We introduce an auxiliary objective to induce

the idea that the arguments of a mention should appear near it. For any token, the objective increases

the sum of the attention probabilities for output tokens that appear within a windowW = 10, letting

the model distribute the mass within that window however it likes. The objective for the find-num

is

Hn
loss = −

m∑
i=1

log
(Ntokens∑

j=0

1nj∈[i±W]Anum
ij

)
We compute a similar loss for the date-attention map Adate (Hd

loss) and the argument-map R (H r
loss).

The final auxiliary loss is

Hloss = Hn
loss +Hd

loss +H r
loss (3.3)

45

3.4.2 Question Parse and Intermediate Module Output Supervision

Question Parse Supervision Learning to parse questions in a noisy feedback environment is very

challenging. For example, even though the questions in CLEVR are programmatically generated,

Hu et al. (2017) needed to pre-train their parser using external supervision for all questions. For the

dataset we work with, DROP (Dua et al., 2019), we have no such external supervision. In order to

bootstrap the parser, we analyze some questions manually and come up with a few heuristic patterns

to get program and corresponding question attention supervision (for modules that require it) for a

subset of the training data (10% of the questions; see Appendix A.1). For example, for program

find-num(find-max-num(find())), we provide supervision for question tokens to attend to when

predicting the find module.

Intermediate Module Output Supervision. Consider the question, “how many yards was the

shortest goal?”. The model only gets feedback for how long the shortest goal is, but not for other

goals. Such feedback biases the model in predicting incorrect values for intermediate modules (only

the shortest goal instead of all in find-num) which in turn hurts model generalization.

We provide heuristically-obtained noisy supervision for the output of the find-num and find-date

modules for a subset of the questions (5%) for which we also provide question program supervision.

For questions like “how many yards was the longest/shortest touchdown?”, we identify all instances

of the token “touchdown” in the paragraph and assume the closest number to it should be an output

of the find-num module. We supervise this as a multi-hot vector N∗ and use an auxiliary loss,

similar to question-attention loss, against the output distribution N of find-num. We follow the

same procedure for a few other question types involving dates and numbers; see Appendix A.1 for

details.

3.5 Experimental Setup

This section describes the DROP dataset used for training and evaluation, the details of our model,

and the previous approaches from the literature used in the experiments for comparison.

46

3.5.1 Dataset

We perform experiments on a portion of the DROP dataset (Dua et al., 2019), which to the best of

our knowledge is the only dataset that requires the kind of compositional and symbolic reasoning

that our model aims to solve. Our model possesses diverse but limited reasoning capability; hence,

we try to automatically extract questions in the scope of our model based on their first n-gram. These

n-grams were selected by performing manual analysis on a small set of questions. The dataset we

construct contains 20, 000 questions for training/validation, and 1800 questions for testing (25% of

DROP). Since the DROP test set is hidden, this test set is extracted from the validation data. Though

this is a subset of the full DROP dataset it is still a significantly-sized dataset that allows drawing

meaningful conclusions.

Based on the manual analysis we classify these questions into different categories, which are:

Date-Compare e.g. What happened last, commission being granted to Robert or death of his

cousin?

Date-Difference e.g. How many years after his attempted assassination was James II coronated?

Number-Compare e.g. Were there more of cultivators or main agricultural labourers in Sweden?

Extract-Number e.g. How many yards was Kasay’s shortest field goal during the second half?

Count e.g. How many touchdowns did the Vikings score in the first half?

Extract-Argument e.g. Who threw the longest touchdown pass in the first quarter?

Auxiliary Supervision Out of the 20, 000 training questions, we provide question program su-

pervision for 10% (2000), and intermediate module output supervision for 5% (1000) of training

questions. We use curriculum learning (Bengio et al., 2009) where the model is trained only on

heuristically-supervised non-count questions for the first 5 epochs.

3.5.2 Model Details

We implement our model using AllenNLP (Gardner et al., 2018).

47

Question and Paragraph Representation Our model represents the question q as Q ∈ Rn×d

and paragraph p as P ∈ Rm×d using contextualized token embeddings. These embeddings are

either produced using a multi-layer GRU network that is trained from scratch, or a pre-trained BERT

model (Devlin et al., 2019) that is fine-tuned during training. GRU:We use a 2-layer, 64-dimensional

(d = 128, effectively), bi-directional GRU. The same GRU is used for both, the question and the

paragraph. The token embeddings input to the contextual encoder are a concatenation of 100-d pre-

trained GloVe embeddings, and 200-d embeddings output from a CNN over the token’s characters.

The CNNuses filters of size=5 and character embeddings of 64-d. The pre-trained glove embeddings

are fixed, but the character embeddings and the parameters for the CNN are jointly learned with the

rest of the model. BERT: The input to the BERT model is the concatenation of the question and

paragraph in the following format: [CLS] Question [SEP] Passage [SEP]. The question and

context tokens input to the BERT model are sub-words extracted by using BERT’s tokenizer. We

separate the question and context representation from the output of BERT as Q and P, respectively.

We use bert-base-uncased model for all our experiments.

Question Parser The decoder for question parsing is a single-layer, 100-dimensional, LSTM. For

each module, we use a 100-dimensional embedding to present it as an action in the decoder’s in-

put/output vocabulary. The attention is computed as a dot-product between the decoder hidden-state

and the encoders hidden states which is normalized using the softmax operation. As the memory-

state for the zero-eth time-step in the decoder, we use the last hidden-state of the question encoder

GRU, or the [CLS] embedding for the BERT-based model. We use a beam-size of 4 for the approxi-

mate maximummarginal likelihood objective. Optimization is performed using the Adam algorithm

with a learning rate of 0.001 or using BERT’s optimizer with a learning rate of 1e−5. The countGRU

in the count module (spanGRU – span module) is a 2-layer, bi-directional GRU with input-dim =

4 and output-dim = 20. The final feed-forward comprises of a single-layer to map the output of the

countGRU into a scalar score.

48

Model F1 EM

NAQANet 62.1 57.9
TAG-NABERT+ 74.2 70.6
NABERT+ 75.4 72.0
MTMSN 76.5 73.1
Our Model (w/ GRU) 73.1 69.6
Our Model (w/ BERT) 77.4 74.0

(a) Performance on DROP
(pruned)

Question Type MTMSN Our Model
(w/ BERT)

Date-Compare (18.6%) 85.2 82.6
Date-Difference (17.9%) 72.5 75.4
Number-Compare (19.3%) 85.1 92.7
Extract-Number (13.5%) 80.7 86.1
Count (17.6%) 61.6 55.7
Extract-Argument (12.8%) 66.6 69.7

(b) Performance by Question Type (F1)

Table 2: Performance of different models on the dataset and across different question types

3.5.3 Comparative approaches

Wecompare to publicly available best performingmodels: NAQANet (Dua et al., 2019), NABERT+ (Kin-

ley and Lin, 2019), TAG-NABERT+ (Efrat and Shoham, 2019), and MTMSN (Hu et al., 2019), all

trained on the same data as our model. All these models are black-box neural networks models

either based on GRUs trained from scratch, or fine-tuned BERT-based models. The arithmetic and

counting operations in these models are performed by having two simple-multi-class classifier heads:

count is performed by predicting a count value in the range 0-9, and arithmetic is performed by select-

ing two passage numbers and a +/- sign between them. None of these models perform any explicit

decomposition of the question and hence their decision making process is non interpretable.

3.6 Results

3.6.1 Overall

Table 2a compares our model’s performance to state-of-the-art models on our full test set. Our model

achieves an F1 score of 73.1 (w/ GRU) and significantly outperforms NAQANet (62.1 F1). Using

BERT representations, our model’s performance increases to 77.4 F1 and outperforms models that

use BERT representations, such as MTMSN (76.5 F1). This shows the efficacy of our proposed

model in understanding complex compositional questions and performing multi-step reasoning over

natural language text. Additionally, this shows that structured models still benefit when used over

representations from large pretrained-LMs, such as BERT.

49

Supervision Type w/ BERT w/ GRU
Hloss Mod-sup

3 3 77.4 73.1
3 76.3 71.8

3 –* 57.3

(a) Effect of Auxiliary Supervision: The aux-
iliary loss contributes significantly to the perfor-
mance, whereas module output supervision has
little effect. *Training diverges without Hloss for
the BERT-based model.

(b) Performance with less training data: Our model
performs significantly better than the baseline with less
training data, showing the efficacy of explicitly model-
ing compositionality.

Figure 8: Effect of auxiliary losses and the size of training data on model performance.

3.6.2 Performance by Question Type.

Table 2b shows the performance for different question types as identified by our heuristic label-

ing. Our model outperforms MTMSN on majority of question types but struggles with counting

questions. Even after pre-training the count module using synthetic data, training it is particularly

unstable. We believe this is because feedback from count questions is weak, i.e., the model only gets

feedback about the count value and not what the underlying set is; and because it was challenging to

define a categorical count distribution given a passage attention distribution— finding a better way

to parameterize this function is an interesting problem for future work.

3.6.3 Effect of Additional Supervision

Figure 8a shows that the unsupervised auxiliary objective significantly improves model performance

(from 57.3 to 73.1 F1). The model using BERT diverges while training without the auxiliary objec-

tive. Additionally, the intermediate module output supervision has slight positive effect on the model

performance.

3.6.4 Effect of Training Data Size

Figure 8b shows that our model significantly outperformsMTMSNwhen training using less data, es-

pecially using 10-25%of the available supervision. This shows that by explicitly modeling composi-

tionality, our model is able to use additional auxiliary supervision effectively and achieves improved

50

Figure 9: Example usage of num-compare-lt: For the given question, our model predicts the pro-
gram: span(compare-num-lt(find, find)). We show the question attentions and the predicted
passage attentions of the two find operations using color-coded highlights on the same question and
paragraph (to save space) at the bottom. The number grounding for the two paragraph attentions
predicted in the compare-num-lt module are shown using the same colors in number-distribution.
Since the number associated to the passage span “45 to 64” is lower (10.3 vs. 15.3), the output of
the compare-num-lt module is “45 to 64” as shown in the passage above.

model generalization.

3.6.5 Qualitative Analysis

Example Prediction In Figure 9 we show an example prediction by our trained model.

Incorrect Program Predictions Mistakes by our model can be classified into two types; incor-

rect program prediction and incorrect execution. Here we show few mistakes of the first type that

highlight the need to parse the question in a context conditional manner:

1. How many touchdown passes did Tom Brady throw in the season? - count(find) is incorrect

since the correct answer requires a simple lookup from the paragraph.

2. Which happened last, failed assassination attempt on Lenin, or the RedTerror? - date-compare-gt(find,

find)) is incorrect since the correct answer requires natural language inference about the order

of events and not symbolic comparison between dates.

3. Who caught the most touchdown passes? - relocate(find-max-num(find))). Such questions,

51

that require nested counting, are out of scope of our defined modules because the model would

first need to to count the passes caught by each player.

3.7 Future Directions

Since we only work with a subset of the DROP dataset, we try adding a simple arithmetic module

to gauge the performance of our on the full dataset. This aim of this analysis is to realize directions

for future work in this class of models.

We try a trivial extension to our model by adding a module that allows for addition & subtraction

between two paragraph numbers. The resulting model achieves a score of 65.4 F1 on the complete

validation data of DROP, as compared to MTMSN that achieves 72.8 F1. Manual analysis of pre-

dictions reveals that a significant majority of mistakes are due to insufficient reasoning capability

in our model and would require designing additional modules. For example, questions such as (a)

“How many languages each had less than 115, 000 speakers in the population?” and “Which racial

groups are smaller than 2%?” would require pruning passage spans based on the numerical compar-

ison mentioned in the question; (b) “Which quarterback threw the most touchdown passes?” and

“In which quarter did the teams both score the same number of points?” would require designing

modules that considers some key-value representation of the paragraph; (c) “How many points did

the packers fall behind during the game?” would require IE for implicit argument (points scored by

the other team). It is not always clear how to design interpretable modules for certain operations;

for example, for the last two cases above.

It is worth emphasizing here what happens when we try to train our model on these questions for

which our modules can’t express the correct reasoning. The modules in the predicted program get

updated to try to perform the reasoning anyway, which harms their ability to execute their intended

operations (cf. §3.2.2). This is why we focus on only a subset of the data when training our model.

In part due to this training problem, some other mistakes of our model relative toMTMSN on the full

dataset are due to incorrect execution of the intermediate modules. For example, incorrect grounding

by the find module, or incorrect argument extraction by the find-num module. For mistakes such as

52

these, our NMN based approach allows for identifying the cause of mistakes and supervising these

modules using additional auxiliary supervision that is not possible in black-boxmodels. In Chapter 5

we propose a novel training paradigm to provide indirect supervision for such intermediate decisions.

This additionally opens up avenues for transfer learning where modules can be independently trained

using indirect or distant supervision from different tasks. Direct transfer of reasoning capability in

black-box models is not so straight-forward.

To solve both of these classes of errors, one could use black-box models, which gain performance

on some questions at the expense of limited interpretability. It is not trivial to combine the two ap-

proaches, however. Allowing black-box operations inside of a neural module network significantly

harms the interpretability—e.g., an operation that directly answers a question after an encoder en-

courages the encoder to perform complex reasoning in a non-interpretable way. This also harms the

ability of the model to use the interpretable modules even when they would be sufficient to answer

the question. Additionally, due to our lack of supervised programs, training the network to use the in-

terpretable modules instead of a black-box shortcut module is challenging, further compounding the

issue. Combining these black-box operations with the interpretable modules that we have presented

is an interesting and important challenge for future work.

3.8 Summary

In this chapter, we show how to use neural module networks to answer compositional questions

requiring symbolic reasoning against natural language text. We define probabilistic modules that

propagate uncertainty about symbolic reasoning operations in a way that is end-to-end differentiable.

Additionally, we show that injecting inductive bias using unsupervised auxiliary losses significantly

helps learning. While we have demonstrated marked success in broadening the scope of neural

modules and applying them to open-domain text, it remains a significant challenge to extend these

models to the full range of reasoning required even just for the DROP dataset. NMNs provide inter-

pretability, compositionality, and improved generalizability, but at the cost of restricted expressivity

as compared to more black box models. Future research is necessary to continue bridging these

reasoning gaps.

53

Chapter 4

Module Faithfulness inCompositional Neu-

ral Networks

In the previous chapter, we described a modular architecture for performing compositional reasoning

over text. Similarly, modular architecture based models have been widely used for compositional

visual question answering against images (Andreas et al., 2016; Hu et al., 2017). One key assumption

in such models is that the designed modules will learn to perform their intended reasoning operation

only using the end-task supervision that is used for training. In this chapter, we study this assumption

on both textual and visual neural module networks and find that it is possible that the modules

will not learn to perform their intended operation from such training signal. This happens even

when the model is trained using gold programs which provides strong supervision about the correct

problem decomposition. Since the modules are parameterized as expressive neural networks and

their composition via the program structure leads to a larger neural network, we find that end-goal

supervision is not sufficient to induce correct intermediate outputs by the modules. In this chapter,

we propose a systematic evaluation methodology for quantifying the correctness of module outputs

and propose methods to improve it. We also show that incorrect module behavior affects the model’s

generalization. This chapter is based on work originally described in Subramanian* et al. (2020).

54

“All the dogs are black.”

find[dogs]

filter[black]

24% 96%

Basic-NMN Interpretable-NMN

equal

100% 100%

76% 100% 13% 100%

False (57%)

count

equal

count

False (98%)

20.9
count count

1.61.4

find[dogs]

filter[black]

Figure 10: An example for a visual reasoning problem where both the Basic and Faithful NMNs
produce the correct answer. The Basic NMN, however, fails to give meaningful intermediate outputs
for the find and filtermodules, whereas our improved Faithful-NMN assigns correct probabilities
in all cases. Boxes are green if probabilities are as expected, red otherwise.

4.1 Introduction

Consider the example in Figure 10 from NLVR2 (Suhr et al., 2019): a model must understand the

compositional utterance in order to then ground dogs in the input, count those that are black and

verify that the count of all dogs in the image is equal to the number of black dogs.

A neural module network designed for this task will parse the input utterance into an executable

program composed of learnable modules. These modules would be designed to perform atomic

reasoning tasks in the visual domain and can be composed to perform complex reasoning. The

decision making process of a NMN is interpretable: it provides a logical meaning representation of

the utterance and also the outputs of the intermediate steps (outputs of the modules) to reach the final

answer.

However, because module parameters are typically learned from end-task supervision only, it is

possible that the program will not be a faithful explanation of the behaviour of the model (Ross

55

et al., 2017; Wiegreffe and Pinter, 2019), i.e., the model will solve the task by executing modules

according to the program structure, but the modules will not perform the reasoning steps as intended.

For example, in Figure 10, a basic NMN predicts the correct answer False, but incorrectly predicts

the output of the find[dogs] operation. It does not correctly locate one of the dogs in the image

because two of the reasoning steps (find and filter) have collapsed into one module (find). This

behavior of the findmodule is not faithful to its intended reasoning operation; a human reading the

program would expect find[dogs] to locate all dogs. Such unfaithful module behaviour yields an

unfaithful explanation of the model behaviour.

Unfaithful behaviour of modules, such as multiple reasoning steps collapsing into one, are unde-

sirable for two reasons: (a) it hurts the interpretability of a model–if a model fails to answer some

question correctly, it is hard to tell which modules are the sources of error, and (b) such behaviour

indicates that the model is not performing problem decomposition in a manner indicated by the

program structure, and should hurt generalization to instances requiring novel compositional pro-

cessing.

In this chapter, we provide three primary contributions regarding faithfulness in NMNs. First, we

propose the concept of module-wise faithfulness – a systematic evaluation of individual module

performance in NMNs that judges whether they have learned their intended operations, and de-

fine metrics to quantify this for both visual and textual reasoning. Empirically, we show on both

NLVR2 (Suhr et al., 2019) and DROP (Dua et al., 2019) that training a NMN using end-task super-

vision, even using gold programs, does not yield module-wise faithfulness, i.e., the modules do not

perform their intended reasoning task. Second, we provide strategies for improving module-wise

faithfulness in NMNs. Specifically, (a) we demonstrate how module architecture affects faithful-

ness, (b) propose supervising module outputs with either a proxy task or heuristically generated

data, and (c) show that providing modules with uncontexualized token representations improves

faithfulness. Figure 10 shows an example where our approach (Faithful-NMN) results in expected

module outputs as compared to the Basic-NMN.

56

In the first quarter, the Texans trailed early after QB Kerry Collins threw
a 19-yard TD pass to WR Nate Washington. Second quarter started
with kicker Neil Rackers made a 37-yard field goal, and the quarter
closed with kicker Rob Bironas hitting a 30-yard field goal. The Texans
tried to cut the lead with QB Matt Schaub getting a 8-yard TD pass
to WR Andre Johnson, but the Titans would pull away with RB Javon
Ringer throwing a 7-yard TD pass . The Texans tried to come back
into the game in the fourth quarter, but only came away with Schaub
throwing a 12-yard TD pass to WR Kevin Walter.

relocate[who threw]
 find-max-num
 filter [the second half]
 find [touchdown pass]

Who threw the longest touchdown pass in the second half?

two dogs are touching a food dish with their face
equal
 count
 with-relation [is touching]
 relocate [face]
 find [dog]
 find [food dish]
 number [two]

Figure 11: An example for a mapping of an utterance to a gold program and a perfect execution in
a reasoning problem from NLVR2 (top) and DROP (bottom).

4.2 Background

In this chapter we use two different neural module networks—Text-NMN: described in the previous

chapter to answer questions against natural language paragraphs; and Visual-NMN: to perform rea-

soning over images in NLVR2 (Suhr et al., 2019). Both NMNs, map a natural language utterance x

into an executable program z that is executed against the given context (e.g., images, text) to output

the denotation y (e.g., truth value in NLVR2, or a text answer in DROP). The program is computed

of learnable modules that perform atomic reasoning tasks. Please refer to section 2.3 in the back-

ground chapter for a detailed explanation of NMNs, and chapter 3 for details about the modules used

in Text-NMN. Below we describe details about our implementation of the Visual-NMN.

4.2.1 Visual-NMN

In NLVR2, given two images and a sentence that describes the images, the model should output

True iff the sentence correctly describes the images. In Visual-NMN, we use the same seq2seq

with grammar-constrained decoding parser used in Text-NMN.We base the implementation of mod-

ules in the Visual-NMN, on LXMERT (Tan and Bansal, 2019), which takes as input the sentence x

and raw pixels, uses Faster R-CNN (Ren et al., 2015) to propose a set of bounding boxes, B, that

cover the objects in the image, and passes the tokens of x and the bounding boxes through a Trans-

57

former (Vaswani et al., 2017), encoding the interaction between both modalities. This produces a

contextualized representation t ∈ R|x|×h for each one of the tokens, and a representation v ∈ R|B|×h

for each one of the bounding boxes, for a given hidden dimension h.

We provide a full list of modules and their implementation in Appendix A.3. Broadly, modules take

as input representations of utterance tokens through an utterance attention mechanism (Hu et al.,

2017), i.e., whenever the parser outputs a module, it also predicts a distribution over the utterance

tokens (p1, . . . , p|x|), and the module takes as input
∑|x|

i=1 piti, where ti is the hidden representation

of token i. In addition, modules produce as output (and take as input) vectors p ∈ [0, 1]|B|, indicating

for each bounding box the probability that it should be output by the module (Mao et al., 2019). For

example, in the program filter[black](find[dog]), the find module takes the word ‘dog’ (using

utterance attention, which puts all probability mass on the word ‘dog’), and outputs a probability

vector p ∈ [0, 1]|B|, where ideally all bounding boxes corresponding to dogs have high probability.

Then, the filter module takes p as input as well as the word ‘black’, and is meant to output high

probabilities for bounding boxes with ‘black dogs’.

4.3 Module-wise Faithfulness

Neural module networks (NMNs) are designed in a modular manner to facilitate compositional rea-

soning. Its compositional structure encourages explicit problem decomposition in terms of inde-

pendent and composable modules. The idea is that these modules will learn specialized operations,

and can be composed in new ways to generalize to novel problem instances. NMNs also facilitate

interpretability of their predictions via the reasoning steps in the structured program and providing

the outputs of those intermediate steps during execution. For example, in Figure 11, all reasoning

steps taken by both the Visual-NMN and Text-NMN can be discerned from the program and the

intermediate module outputs. However, because module parameters are learned from an end-task,

there is no guarantee that the modules will learn to perform their intended reasoning operation. In

such a scenario, when modules do not perform their intended reasoning, the program is no longer a

faithful explanation of the model behavior since it is not possible to reliably predict the outputs of

the intermediate reasoning steps given the program.

58

We introduce the concept of module-wise faithfulness aimed at evaluating whether each module has

correctly learned its intended operation by judging the correctness of its outputs in a trained NMN.

For example, in Figure 11 (top), a model would be judged module-wise faithful if the outputs of

all the modules, find, relocate, and with_relation, are correct – i.e. similar to the outputs that

a human would expect. We provide gold programs when evaluating faithfulness, to not conflate

faithfulness with parser accuracy.

4.3.1 Measuring Faithfulness in Visual-NMN

Modules in Visual-NMN provide for each bounding box a probability for whether it should be a mod-

ule output. To evaluate intermediate outputs, we sampled examples from the development set, and

annotated gold bounding boxes for each instance of find, filter, with-relation and relocate.

The annotator draws the correct bounding-boxes for each module in the gold program, similar to the

output in Figure 11 (top).

A module of a faithful model should assign high probability to bounding-boxes that are aligned with

the annotated bounding boxes and low probabilities to other boxes. Since the annotated bounding

boxes do not align perfectly with the model’s bounding boxes, our evaluation must first induce

an alignment. We consider two bounding boxes as “aligned” if the intersection-over-union (IOU)

between them exceeds a pre-defined threshold T = 0.5. Note that it is possible for an annotated

bounding box to be aligned with several proposed bounding boxes and vice versa. Next, we consider

an annotated bounding boxBA as “matched” w.r.t a module output ifBA is aligned with a proposed

bounding box BP , and BP is assigned by the module a probability > 0.5. Similarly, we consider a

proposed bounding box BP as “matched” if BP is assigned by the module a probability > 0.5 and

is aligned with some annotated bounding box BA.

We compute precision and recall for each module type (e.g. find) in a particular example by con-

sidering all instances of the module in that example. We define precision as the ratio between the

number of matched proposed bounding boxes and the number of proposed bounding boxes assigned

a probability of more than 0.5. We define recall as the ratio between the number of matched an-

59

notated bounding boxes and the total number of annotated bounding boxes.1 F1 is the harmonic

mean of precision and recall. Similarly, we compute an “overall” precision, recall, and F1 score for

an example by considering all instances of all module types in that example. The final score is an

average over all examples.

4.3.2 Measuring Faithfulness in Text-NMN

Each module in Text-NMN produces a distribution over passage tokens (§3.3.4) which is a soft dis-

tributed representation for the selected spans. To measure module-wise faithfulness in Text-NMN,

we obtain annotations for the set of spans that should be output by each module in the gold pro-

gram (as seen in Figure 11 (bottom)) Ideally, all modules (find, filter, etc.) should predict high

probability for tokens that appear in the gold spans and zero probability for other tokens.

To measure a module output’s correctness, we use a metric akin to cross-entropy loss to measure

the deviation of the predicted module output patt from the gold spans S = [s1, . . . , sN]. Here each

span si = (tis, t
i
e) is annotated as the start and end tokens. Faithfulness of a module is measured by:

I = −
N∑
i=1

(
log

tie∑
j=tis

pjatt

)
. (4.1)

Lower cross-entropy corresponds to better faithfulness of a module.

4.4 Improving Faithfulness in NMNs

Module-wise faithfulness is affected by various factors: the choice of modules and their implemen-

tation, use of auxiliary supervision, and the use of contextual utterance embeddings. We discuss

ways of improving faithfulness of NMNs across these dimensions.
1The numerators of the precision and the recall are different. Please see Appendix A.2.1 for an explanation.

60

4.4.1 Choice of Modules

Visual reasoning The count module always appears in NLVR2 as one of the top-level modules

(see Figures 10 and 11).2 We now discuss how its architecture affects faithfulness. Consider the

program, count(filter[black](find[dogs])). Its gold denotation (correct count value) would

provide minimal feedback using which the descendant modules in the program tree, such as filter

and find, need to learn their intended behavior. However, if count is implemented as an expressive

neural network, it might learn to perform tasks designated for find and filter, hurting faithfulness.

Thus, an architecture that allows counting, but also encourages descendant modules to learn their

intended behaviour through backpropagation, is desirable. We discuss three possible count archi-

tectures, which take as input the bounding box probability vector p ∈ [0, 1]|B| and the visual features

v ∈ R|B|×h.

Layer-count module is motivated by the count architecture of Hu et al. (2017), which uses a linear

projection from image attention, followed by a softmax. This architecture explicitly uses the visual

features, v, giving it greater expressivity compared to simpler methods. First we compute p · v,

the weighted sum of the visual representations, based on their probabilities, and then output a scalar

count using: FF1(LayerNorm(FF2(p · v)), where FF1 and FF2 are feed-forward networks, and the

activation function of FF1 is ReLU in order to output positive numbers only.

As discussed, since this implementation has access to the visual features of the bounding boxes, it

can learn to perform certain tasks itself, without providing proper feedback to descendant modules.

Sum-count module on the other extreme, ignores v, and simply computes the sum
∑|B|

i=1 pi. Being

parameter-less, this architecture provides direct feedback to descendant modules on how to change

their output to produce better probabilities. However, such a simple functional-form ignores the

fact that bounding boxes are overlapping, which might lead to over-counting objects. In addition,

we would want count to ignore boxes with low probability. For example, if filter predicts a 5%
2Top-level modules are Boolean quantifiers, such as number comparisons like equal (which require count) or exist.

We implement exist using a call to count and greater-equal (see Appendix A.3), so count always occurs in the
program.

61

probability for 20 different bounding boxes, we would not want the output of count to be 1.0.

Graph-count module (Zhang et al., 2018) is a middle ground between both approaches - the naïve

Sum-Count and the flexible Layer-Count. Like Sum-Count, it does not use visual features, but learns

to ignore overlapping and low-confidence bounding boxes while introducing only a minimal num-

ber of parameters (less than 300). It does so by treating each bounding box as a node in a graph,

and then learning to prune edges and cluster nodes based on the amount of overlap between their

bounding boxes (see paper for further details). Because this is a light-weight implementation that

does not access visual features, proper feedback from the module can propagate to its descendants,

encouraging them to produce better predictions.

Textual reasoning In the context of Text-NMN (onDROP), we study the effect of several modules

on interpretability.

First, we introduce an extract-answermodule. This module bypasses all compositional reasoning

and directly predicts an answer from the input contextualized representations. This has potential

to improve performance, in cases where a question describes reasoning that cannot be captured by

pre-defined modules, in which case the program can be the extract-answer module only. How-

ever, introducing extract-answer adversely affects interpretability and learning of other modules,

specifically in the absence of gold programs. First, extract-answer does not provide any inter-

pretability. Second, whenever the parser predicts the extract-answer module, the parameters of

the more interpretable modules are not trained. Moreover, the parameters of the encoder are trained

to perform reasoning internally in a non-interpretable manner. We study the interpretability vs. per-

formance trade-off by training Text-NMN with and without extract-answer.

Second, consider the program find-max-num(find[touchdown]) that aims to find the longest

touchdown. find-max-num should sort spans by their value and return the maximal one; if we re-

move find-max-num, the program would reduce to find[touchdown], and the findmodule would

have to select the longest touchdown rather than all touchdowns, following the true denotation. More

generally, omitting atomic reasoningmodules pushes othermodules to compensate and perform com-

62

plex tasks that were not intended for them, hurting faithfulness. To study this, we train Text-NMN

by removing sorting and comparison modules (e.g., find-max-num and num-compare), and evaluate

how this affects module-wise interpretability.

4.4.2 Supervising Module Output

As explained, given end-task supervision only, modules may not act as intended, since their param-

eters are only trained for minimizing the end-task loss. Thus, a straightforward way to improve

interpretability is to train modules with additional atomic-task supervision.

Visual reasoning For Visual-NMN, we pre-train find and filtermodules with explicit interme-

diate supervision, obtained from the GQA balanced dataset (Hudson and Manning, 2019). Note that

this supervision is used only during pre-training – we do not assume we have full-supervision for the

actual task at hand. GQA questions are annotated by gold programs; we focus on “exist” questions

that use find and filter modules only, such as “Are there any red cars?”.

Given gold annotations from Visual Genome (Krishna et al., 2017), we can compute a label for each

of the bounding boxes proposed by Faster-RCNN. We label a proposed bounding box as ‘positive’

if its IOU with a gold bounding box is > 0.75, and ‘negative’ if it is < 0.25. We then train on GQA

examples, minimizing both the usual denotation loss, as well as an auxiliary loss for each instance

of find and filter, which is binary cross entropy for the labeled boxes. This loss rewards high

probabilities for ‘positive’ bounding boxes and low probabilities for ‘negative’ ones.

Textual reasoning In Chapter 3 we proposed heuristic methods to extract supervision for the

find-num and find-date modules in DROP. On top of the end-to-end objective, we use an aux-

iliary objective that encourages these modules to output the “gold” numbers and dates according to

the heuristic supervision. We evaluate the effect of such supervision on the faithfulness of both the

supervised modules, as well as other modules that are trained jointly.

63

4.4.3 Decontextualized Word Representations

The goal of decomposing reasoning into multiples steps, each focusing on different parts of the

utterance, is at odds with the widespread use of contextualized representations such as BERT or

LXMERT. While the utterance attention is meant to capture information only from tokens relevant

for the module’s reasoning, contextualized token representations carry global information. For ex-

ample, consider the program filter[red](find[car]) for the phrase red car. Even if find attends

only to the token car, its representation might also express the attribute red, so find might learn to

find just red cars, rather than all cars, rendering the filter module useless, and harming faithful-

ness. To avoid such contextualization in Visual-NMN, we zero out the representations of tokens

that are unattended, thus the input to the module is computed (with LXMERT) from the remaining

tokens only.

4.5 Experimental Setup

This section describes the data used for measuring faithfulness and the details of the experiments.

Visual reasoning We use the published pre-trained weights and the same training configuration

of LXMERT (Tan and Bansal, 2019), with 36 bounding boxes proposed per image. Due to memory

constraints, we restrict training data to examples having a gold program with at most 13 modules.

We automatically generate gold program annotations for 26, 311 training set examples and for 5, 772

development set examples from NLVR2. The input to this generation process is the set of crowd-

sourced question decompositions from the Break dataset (Wolfson et al., 2020). We generated pro-

gram annotations for NLVR2 by automatically canonicalizing its question decompositions in the

Break dataset. Decompositions were originally annotated by Amazon Mechanical Turk workers.

For each utterance, the workers were asked to produce the correct decomposition and an utterance

attention for each operator (module), whenever relevant.

Limitations of Program Annotations: Though our annotations for gold programs in NLVR2 are

largely correct, we find that there are some examples for which the programs are unnecessarily

64

Figure 12: An example of a gold program for NLVR2 that is unnecessarily complicated.

complicated. For instance, for the sentence “the right image contains a brown dog with its tongue

extended.” the gold program is shown in Figure 12. This program could be simplified by replacing

the with-relationwith the second argument of with-relation. Programs like this make learning

more difficult for the NMNs since they use modules (in this case, with-relation) in degenerate

ways. There are also several sentences that are beyond the scope of our language, e.g. comparisons

such as “the right image shows exactly two virtually identical trifle desserts.”

For module-wise faithfulness evaluation, 536 examples from the development set were annotated

with the gold output for each module by experts.

Textual reasoning We train Text-NMN on DROP, which is augmented with program supervision

for 4, 000 training questions collected heuristically as described in Chapter 3. The model is evalu-

ated on the complete development set of DROP which does not contain any program supervision.

Module-wise faithfulness is measured on 215manually-labeled questions from the development set,

which are annotated with gold programs and module outputs (passage spans).

4.6 Results

4.6.1 Faithfulness Evaluation in Visual Reasoning

Results are seen in Table 3. Accuracy for LXMERT, when trained and evaluated on the same subset

of data, is 71.7%; slightly higher than NMNs, but without providing any evidence for the composi-

tional structure of the problem.

65

Model Performance
(Accuracy)

Overall Faithful. (↑) Module-wise Faithfulness F1(↑)

Prec. Rec. F1 find filter with-relation relocate

LXMERT 71.7

Upper Bound 1 0.84 0.89 0.89 0.92 0.95 0.75

NMN w/ Layer-count 71.2 0.39 0.39 0.11 0.12 0.20 0.37 0.27
NMN w/ Sum-count 68.4 0.49 0.31 0.28 0.31 0.32 0.44 0.26
NMN w/ Graph-count 69.6 0.37 0.39 0.28 0.31 0.29 0.37 0.19

NMN w/ Graph-count + decont. 67.3 0.29 0.51 0.33 0.38 0.30 0.36 0.13

NMN w/ Graph-count + pretraining 69.6 0.44 0.49 0.36 0.39 0.34 0.42 0.21

NMN w/ Graph-count + decont. + pretraining 68.7 0.42 0.66 0.47 0.52 0.41 0.47 0.21

Table 3: Faithfulness and accuracy on NLVR2. “decont.” refers to decontextualized word repre-
sentations. Precision, recall, and F1 are averages across examples, and thus F1 is not the harmonic
mean of the corresponding precision and recall.

For faithfulness, we measure an upper-bound on the faithfulness score. Recall that this score mea-

sures the similarity between module outputs and annotated outputs. Since module outputs are con-

strained by the bounding boxes proposed by Faster-RCNN, while annotated boxes are not, perfect

faithfulness could only be achieved by a model if there are suitable bounding boxes. Upper Bound

shows the maximal faithfulness score conditioned on the proposed bounding boxes.

We now compare the performance and faithfulness scores of the different components. When train-

ing our NMN with the most flexible count module, (NMN w/ Layer-count), an accuracy of 71.2% is

achieved, a slight drop compared to LXMERT but with low faithfulness scores. Using Sum-count

drops about 3% of performance, but increases faithfulness. Using Graph-count increases accuracy

while faithfulness remains similar.

Next, we analyze the effect of decontextualized word representations (abbreviated “decont.”) and

pre-training. First, we observe that NMN w/ Graph-count + decont. increases faithfulness score to

0.33 F1 at the expense of accuracy, which drops to 67.3%. Pre-training (NMN w/ Graph-count +

pretraining) achieves higher faithfulness scores with a higher accuracy of 69.6%. Combining the

two achieves the best faithfulness (0.47 F1) with a minimal accuracy drop. We perform a paired

permutation test to compare NMN w/ Graph-count + decont. + pretraining with NMN w/ Layer-

count and find that the difference in F1 is statistically significant (p < 0.001). Please see Appendix

A.4 for further details.

66

Model Performance
(F1 Score)

Overall Faithful.
(cross-entropy∗ ↓)

Module-wise Faithfulness∗ (↓)

find filter relocate min-max† find-arg†

Text-NMN w/o prog-sup
w/ extract-answer 63.5 9.5 13.3 9.5 3.5 2.6 9.9
w/o extract-answer 60.8 6.9 8.1 7.3 1.3 1.7 8.5

Text-NMN w/ prog-sup
no auxiliary sup 65.3 11.2 13.7 16.9 1.5 2.2 13.0
w/o sorting & comparison 63.8 8.4 9.6 11.1 1.6 1.3 10.6
w/ module-output-sup 65.7 6.5 7.6 10.7 1.3 1.2 7.6

Table 4: Faithfulness and performance scores for various NMNs on DROP. ∗lower is better.
†min-max is average faithfulness of find-min-num and find-max-num; find-arg of find-num and
find-date.

4.6.2 Faithfulness Evaluation in Textual Reasoning

As seen in Table 4, when trained on DROP using question-program supervision, the model achieves

65.3 F1 performance and a faithfulness score of 11.2 (lower is better). When adding supervision

for intermediate modules, we find that the module-wise faithfulness score improves to 6.5. Simi-

lar to Visual-NMN, this shows that supervising intermediate modules in a program leads to better

faithfulness.

To analyze how choice of modules affects faithfulness, we train without sorting and comparison

modules (find-max-num, num-compare, etc.). We find that while performance drops slightly, faith-

fulness deteriorates significantly to 8.4, showing that modules that perform atomic reasoning are

crucial for faithfulness. When trained without program supervision, removing extract-answer

improves faithfulness (9.5 → 6.9) but at the cost of performance (63.5 → 60.8 F1). This shows

that such a black-box module encourages reasoning in an opaque manner, but can improve perfor-

mance by overcoming the limitations of pre-defined modules. All improvements in faithfulness are

significant as measured using paired permutation tests (p < 0.001).

4.6.3 Measuring Generalization

A natural question is whether models that are more faithful also generalize better. We conducted a

few experiments to see whether this is true for our models. For NLVR2, we performed (1) an exper-

67

iment in which programs in training have length at most 7, and programs at test time have length

greater than 7, (2) an experiment in which programs in training have at most 1 filter module and

programs at test time have at least 2 filter modules, and (3) an experiment in which programs in

training do not have both filter and with-relation modules in the same program, while each

program in test has both modules. We compared three of our models – NMN w/ Layer-count, NMN

w/ Sum-count, and NMN w/ Graph-count + decont. + pretraining. We did not observe that faithful

models generalize better (in fact, the most unfaithful model tended to achieve the best generaliza-

tion).

To measure if faithful model behavior leads to better generalization in Text-NMN we conducted the

following experiment. We selected the subset of data for which we have gold programs and split the

data such that questions that require maximum and greater-than operations are present in the training

data while questions that require computing minimum and less-than are in the test data. We train

and test our model by providing gold-programs under two conditions, in the presence and absence

of additional module supervision. We find that providing auxiliary module supervision (that leads

to better module faithfulness; see above) also greatly helps in model generalization (performance

increases from 32.3 F1 → 78.3 F1). This result demonstrates that when the modules correctly learn

to perform their intended reasoning, they generalize better to novel program contexts.

4.6.4 Qualitative Analysis

Weanalyze outputs of differentmodules in Figure 13. Figures 13a, 13b show the output of find[llamas]

when trained with contextualized and decontextualized word representations. With contextualized

representations (13a), the find fails to select any of the llamas, presumably because it can observe

the word eating, thus effectively searching for eating llamas, which are not in the image. Conversely,

the decontextualized model correctly selects the boxes. Figure 13c shows that find outputs mean-

ingless probabilities for most of the bounding boxes when trained with Layer-count, yet the count

module produces the correct value (three). Figure 13d shows that find fails to predict all relevant

spans when trained without sorting modules in Text-NMN.

68

utt: “the llamas in both images are eating”

(a) (b)

find[llamas]

(c)

find[people] utt: “there are three people”

(e)

find[safety pin]utt:“at least one safety pin is not embellished.”

count

3

The Redskins obtained an early lead when RB Clinton Portis scored
on a 3-yard TD run. St. Louis scored again when free safety
Oshiomogho Atogwe scored a 75 yards touchdown. Washington
regained the lead with ….. and a Clinton Portis 2-yard rushing TD.
St. Louis would come back with a 49-yard field goal.

find[touchdown run]

(d)

Figure 13: Comparison of module outputs between NMN versions: (a) Visual-NMN with contex-
tualized representations, (b) Visual-NMN with decontextualized representations, (c) model using a
parameter-rich count layer (Layer-Count), (d) Text-NMN trained without sorting module produces
an incorrect find output (misses 2-yard rushing TD), and (e) Visual-NMN failure case with a rare
object (of w/ Graph-count + decont. + pretraining)

4.7 Summary

In this chapter, we introduce the concept of module-wise faithfulness, a systematic evaluation of

correctness of module execution in neural module networks (NMNs) for visual and textual reasoning.

We show that training NMNs using end-task supervision alone does not produce faithful modules,

even when trained using gold programs. This shows that compositional model structure alone is

not sufficient to encourage compositional processing; since the modules are implemented using

neural networks, there is no guarantee that modules will learn to perform independent tasks that were

intended for them. Additionally, we propose several techniques to improvemodule-wise faithfulness

69

in NMNs and show that our approach leads to much higher module-wise faithfulness at a marginal

cost to performance. We encourage future work to judge the correctness of individual modules

in models with such compositional structure using the proposed evaluation and publicly published

annotations. We also hope that the community will explore techniques that encourage modules to

learn their intended behaviour, without resorting to expensive annotations.

70

Chapter 5

Paired Examples as Indirect Supervision

in Latent Decision Models

Developing models that are capable of reasoning about complex real-world problems is challenging.

It involves decomposing the problem into sub-tasks, making intermediate decisions, and combining

them to make the final prediction. In the previous chapters, we propose a neural module network

based question answering model that parses the question into an explicit program that describes the

sub-tasks and the structure in which they need to be composed. These sub-tasks are performed by

learnable modules that are designed to learn to perform specific atomic reasoning tasks, with the idea

that they can be composed in novel ways to perform complex reasoning. In Chapter 4, we saw that

end-task supervision provides a very weak training signal for what the correct outputs of the interme-

diate modules should be. As a result, the modules do not learn to perform their intended reasoning

operation which hurts generalization when these modules are used in novel contexts. Therefore,

we can say that individual training examples do not provide sufficient training signal for learning

intermediate decisions, and hence induce compositional processing. In this chapter, we introduce a

way to leverage paired examples that provide stronger cues for learning the latent decisions (outputs

of the modules) that the model should predict. When two related training examples share internal

substructure, we add an additional training objective to encourage consistency between their latent

71

decisions. This indirect supervision constraints the model from exploiting any shortcuts and encour-

ages problem decomposition in the manner proposed by the program structure . We empirically

demonstrate that our proposed approach improves both in- and out-of-distribution generalization of

our question answering model, and leads to correct latent decision predictions. This chapter is based

on work originally described in Gupta et al. (2021b).

5.1 Introduction

Let us first quickly recall how a compositional structured model (e.g., our NMN based QA model

in §3) would answer a compositional question. To answer How many field goals were scored in the

first half? against a passage containing a football-game summary, the model would first ground the

set of field goalsmentioned in the passage, then filter this set to the ones scored in the first half, and

then return the size of the resulting set as the answer.

In Chapter 4 we saw that learning such models using just the end-task supervision is difficult, since

the decision boundary that the model is trying to learn is complex, and the lack of any supervision

for the latent decisions provides only a weak training signal. Moreover, the presence of dataset ar-

tifacts (Lai and Hockenmaier, 2014; Gururangan et al., 2018; Min et al., 2019, among others), and

degeneracy in the model, where incorrect latent decisions can still lead to the correct output, further

complicates learning. As a result, models often fail to predict meaningful intermediate outputs and

instead end up fitting to dataset quirks, thus hurting generalization. In our application of NMNs,

modules do not learn to correctly perform the tasks independently, thus hurting compositional rea-

soning if they are combined in novel ways.

We propose amethod to leverage related training examples to provide an indirect supervision to these

intermediate decisions. Our method is based on the intuition that related examples involve similar

sub-tasks; hence, we can use an objective on the outputs of these sub-tasks to provide an additional

training signal. Concretely, we use paired examples—instances that share internal substructure—

and apply an additional training objective relating the outputs from the shared substructures resulting

from partial model execution. Using this objective does not require supervision for the output of the

72

shared substructure, or even the end-task of the paired example. This additional training objective

imposes weak constraints on the intermediate outputs using related examples and provides the model

with a richer training signal than what is provided by a single example. For example,What was the

shortest field goal? shares the substructure of finding all field goalswithHow many field goals were

scored?. For this paired example, our proposed objective would enforce that the output of this latent

decision for the two questions is the same.

We demonstrate the benefits of our paired training objective using our textual-NMN proposed in

Chapter 3 on the DROP dataset. While there can be many ways of acquiring paired examples, we

explore three directions. First, we show how naturally occurring paired questions can be automati-

cally found from within the dataset. Further, since our method does not require end-task supervision

for the paired example, one can also use data augmentation techniques to acquire paired questions

without requiring additional annotation. We show how paired questions can be constructed using

simple templates, and how a pre-trained question generation model can be used to generate paired

questions.

We empirically demonstrate that our paired training objective leads to overall performance improve-

ment of the NMN model. Based on the evaluation methodology described in Chapter 4, we quan-

titatively show that using this paired objective results in significant improvement in predicting the

correct latent decisions, and thus demonstrate that themodel’s performance is improving for the right

reasons. Finally, we show that the proposed approach leads to better compositional generalization

to out-of-distribution examples. Our results show that we achieve the stated promise of composi-

tional structured models: an interpretable model that naturally encodes compositional reasoning and

uses its modular architecture for better generalization.

5.2 Paired Examples as Indirect Supervision for Latent Decisions

We first describe our approach generally as it can be applied to a host of compositional structured

models that perform an explicit problem decomposition and predict interpretable latent decisions that

are composed to predict the final output. We will then describe how we apply this idea specifically

73

Figure 14: Proposed paired objective: For training examples that share substructure, we propose an
additional training objective relating their latent decisions; S in the shaded gray area. In this figure,
g(Xi[m : n]) = g(BERT(xi, p)[m : n]), where BERT(xi, p) is the contextualized representation
of xi-th question/passage, and [m : n] is its slice for the m through n token. g = find in all cases.
Here, since the outputs of the shared substructures should be the same, S would encourage equality
between them.

to our NMN.

Let us say, for a given input x, a model performs the computation f(g(x), h(x)) to predict the output

y. This computation tree f(g(x), h(x)) = z could represent a program in our NMN, for example.

Following our notation, we will use the notation z to denote a computation tree, and JzK to denote
the output of its execution. Hence we can write,

y = Jf(g(x), h(x))K (5.1)

where f , g, and h perform the three sub-tasks required for x and the computations g(x) and h(x)

are the intermediate decisions. The actual computation tree would be dependent on the input and the

structure of the model. For example, to answerHowmany field goals were scored?, our NMNwould

perform f(g(x)) where g(x) would be the findmodule to output the set of field goals and f would

be the countmodule to return the size of this set. While we focus on NMNs, other models that have

similar structures where our techniques would be applicable include language models with latent

variables for coreference (Ji et al., 2017), syntax trees (Dyer et al., 2016), or knowledge graphs (Lo-

gan et al., 2019); checklist-style models that manage coverage over parts of the input (Kiddon et al.,

2016); or any neural model that has some interpretable intermediate decision, including standard

attention mechanisms (Bahdanau et al., 2015). In the next chapter we will see how we apply this

idea to improve weakly-supervised semantic parsing.

74

Typically, the only supervision provided to the model are gold (x, y∗) pairs, without the outputs of

the intermediate decisions (Jg(x)K and Jh(x)K above), from which it is expected to jointly learn the

parameters of all of its components. In our NMN for QA, we are only provided with question-answer

supervision and expected to jointly learn the parameters for all modules without any intermediate

module output supervision. In Chaper 4, we saw that such weak supervision is not enough for

accurate learning, and the fact that incorrect latent decisions can lead to the correct prediction further

complicates learning. Consequently, models fail to learn to perform these latent tasks correctly and

usually end up modeling irrelevant correlations in the data.

We propose a method to leverage paired examples—examples whose one or more latent decisions

are related to each other—to provide an indirect supervision to these latent decisions. Consider

paired training examples xi and xj with the following computation trees:

zi = f(g(xi), h(xi)) (5.2)

zj = f(k(g(xj))) (5.3)

These trees share the internal substructure g(x). In such a scenario, we propose an additional train-

ing objective S(Jg(xi)K, Jg(xj)K) to enforce consistency of partial model execution for the shared
substructure:

Lpaired = S(Jg(xi)K, Jg(xj)K) (5.4)

For example, the two questions on the LHS of Figure 14 share the intermediate decision of finding

the field goals. i.e., their computation trees share the substructure g(x) = find[field goal]. In such

a case, where the outputs of the intermediate decision should be the same for the paired examples,

using a similarity measure for S would enforce equality of the latent outputs Jg(x)K. We will go

into the specifics of this example later in this section. By adding this consistency objective, we are

able to provide an additional training signal to the latent decision using related examples, and hence

indirectly share supervision among multiple training examples. As a result, we are able to more

densely characterize the decision boundary around an instance (xi), by using related instances (xj),

than what was possible by using the original instance alone.

75

To use this consistency objective for xi, we do not require supervision for the latent output Jg(xi)K,
nor the gold end-task output y∗j for the paired example xj ; we only enforce that the intermediate

decisions are consistent. Additionally, we are not limited to enforcing consistency for a single inter-

mediate decision from a single paired example; if xi shares an additional substructure h(x) with a

paired example xk, we can add an additional term S′(Jh(xi)K, Jh(xk)K) to Eq. 5.4.
5.2.1 Training via Paired Examples in Neural Module Networks

We apply our approach to improve question answering using our neural module network based QA

model described in Chapter 3.

Recall that, to answer q = How many field goals were scored in the first half?, our NMN would

parse it into a program z = count(filter[in the first half](find[field goals])); essentially per-

forming, y = Jf(g(q, h(q)))K, where f = count, g = filter, and h = find. Similarly, to

answer q = How many field goals were scored?, our NMN would parse it into a program z =

count(find[field goals]); essentially performing y = Jf(g(q))K, where f = count and g = find.

In this chapter we assume that for every question q in the training data, we are also given the gold

program z∗, along with the correct answer a∗. Therefore, the model only needs to learn the param-

eters for the modules (e.g., find, count, filter, etc.). In Chapter 4 we saw that correctly learning

the module parameters only using the answer supervision is challenging. Learning is further compli-

cated by the fact that the space of possible intermediate outputs is quite large and incorrect module

output prediction can still lead to the correct answer. For example, the find module in the question

above needs to learn to select the spans describing field goals among all possible spans in the passage

using just the count value as answer supervision. With no direct supervision for the module outputs,

the modules can learn incorrect behavior but still predict the correct answer, effectively memorizing

the training data. Such a model would presumably fail to generalize.

In this chapter, we use our BERT-based model since that lead to better performance. Let us first

recall how a program execution actually works. Given a question q and passage p, BERT is used to

compute joint contextualized representations for the (question, passage) combination, BERT(q, p) ∈

76

R(|q|+|p|)×d. During execution, the modules that take a question span argument as input (e.g. find)

operate on the corresponding slice of this contextualized representation. For example, in q = How

many field goals were scored? with program z = count(find[field goals]), to execute find[field

goals], the model actually executes find(BERT(q, p)[2 : 3]).1 Here the slice [2 : 3] corresponds to

the contextualized representations for the 2nd through the 3rd token (field goals) of the question.

Paired training in NMNs We consider a pair of questions whose program trees z share a sub-

tree as paired examples. A shared subtree implies that a part of the reasoning required to answer

the questions is the same. Since some modules take as input a string argument, we define two

subtrees to be equivalent iff their structure matches and the string arguments to the modules that

require them are semantically equivalent. For example, subtrees find-num(find[passing touch-

downs]) and find-num(find[touchdown passes]) are equivalent, while they are not the same as

find-num(find[touchdown runs]). We describe how we detect semantic equivalence in the next

section.

Consider a question qi that shares the substructure g(q) with a paired question qj . Since shared

substructures are common program subtrees in our case, we encourage the latent outputs, the outputs

Jg(q)K of the subtree, to be equal to enforce consistency. As the outputs of modules are probability
distributions, enforcing consistency amounts to minimizing the KL-divergence between the two

outputs. We therefore maximize the following paired objective from Eq. 5.4,

Lpaired = −
(
KL
[Jg(qi)K ∥ Jg(qj)K]+ KL

[Jg(qj)K ∥ Jg(qi)K]) (5.5)

where S(p1, p2) = −(KL[p1∥p2] + KL[p2∥p1]) is the negative symmetric KL-divergence.

To understand why such an objective is helpful even though the paired examples share exact subtrees,

consider the paired examples on the LHS of Figure 14. The substructure g(q) = find[field goal]

is shared between them. Even though the input string argument to find is the same, what gets

executed is g(qi) = find(BERT(x1, p)[2 : 3]) and g(qj) = find(BERT(x2, p)[7 : 8]), i.e. find
1All modules also take the (BERT-encoded) passage p as an implicit argument, as well as additional state extracted

from the passage such as which tokens are numbers, which we omit for notational simplicity.

77

What were the field goals?
spans(find[field goals]))

Who kicked the longest field goal?
project[Who kicked](find-max-num(find[field goal])) count(find[field goals]))

How many field goals were scored?

How many field goals were scored after the first half?
count(filter[after the first half](find[field goals]))

How many yards was the shortest field goal?
find-num(find-min-num(find[field goal]))

Constructed
paired example

Figure 15: Templated Construction of Paired Examples: Constructed paired examples can help in
indirectly enforcing consistency between different training examples (§5.3.2).

gets as input different contextualized representations of field goal from the two questions. Due to

different inputs, the output of find could be different, which would lead to inconsistent behavior

and inefficient learning. Our paired objective (Eq. 5.5) would encourage that these two outputs are

consistent, thereby allowing sharing of supervision across examples.

Complete Example We describe the benefits of training with paired data using an example. Con-

sider the four questions in the periphery of Figure 15; all of them share the substructure of finding the

field goal scoring events. However, we find that for the questions requiring the find-{max/min}-num

operation, our vanilla NMN directly grounds to the longest/shortest field goal as the find execution.

Due to the use of powerful NNs (i.e., BERT) for contextualized question/passage representations and

no constraints on the modules to perform as intended, the model performs the symbolicmin/max op-

eration internally in its parameters. Such find execution results in non-interpretable behavior, and

substantially hurts generalization to the count questions. By enforcing consistency between all the

find executions, the model can no longer shortcut the compositional reasoning defined by the pro-

grams; this results in correct find outputs and better generalization, as we will later see in the results

section. Note that in this example we do not know the correct answer a∗ for the constructed question

What were the field goals?, nor do we know the intermediate output Jfind[field goals]K. The only
additional supervision given to the model is that there is a pairing between substructures in all of

these examples, and so the model should be consistent.

78

5.3 Many Ways of Getting Paired Data

We explore three ways of acquiring paired questions. We show how questions that share substruc-

tures can be automatically found from within the dataset, and how new paired questions can be

constructed using templates, or generated using a question-generation model (§5.3.2).

5.3.1 Finding Naturally Occurring Paired Data

Any dataset that contains multiple questions against the same context could have questions that query

different aspects of the same underlying event or entity. These examples can potentially be paired by

finding the elements in common between them. As the DROP data that we are using has annotated

programs, this process is simplified somewhat in that we can simply find pairs of programs in the

training data that share a subtree. While the subtrees could be of arbitrary size, we limit ourselves

to programs that share a leaf find module. Recall that find requires a question string argument, so

the challenge of finding paired questions reduces to discovering pairs of find modules in different

questions about the same paragraph whose question string arguments are semantically equivalent.

To this end, we use BERTScore (Zhang* et al., 2020) to measure string similarity.

We consider two string arguments to be semantically equivalent if their BERTScore-F1 exceeds a

threshold (0.6), and if the same entities are mentioned in the arguments. This additional constraint

allows us to judge that Jay Feely’s field goal and Janikowski’s field goal are semantically different,

even though they receive a high BERTScore. This approach would find paired examples like,

What term is used to describe the Yorkist defeat at Ludford Bridge in 1459?

What happened first: Yorkist defeat at Ludford Bridge or widespread pillaging by Queen Margaret?

5.3.2 Paired Data via Augmentation

One benefit of our consistency objective (Eq. 5.4) is that it only requires that the paired example

shares substructure. This allows us to augment training data with new paired questions without

knowing their gold answer. We explore two ways for such augmentation; (a) constructing paired

questions using templates, and (b) generating paired questions using a question-generation model.

79

Templated Construction of Paired Examples

Grounding find event(s) Using the question argument from the findmodule of certain frequently

occurring programs, we construct a paired question that aims to ground the mentions of the event

queried in the find module. For example, Who scored the longest touchdown? would be paired

withWhat were the touchdowns?. This templated paired question construction is carried out for,

(1) count(find[])

(2) count(filter(find[]))

(3) find-num(find-max-num(find[]))

(4) find-num(find-max-num(filter[](find[])))

(5) project[](find-max-num(find[]))

(6) project[](find-max-num(filter[](find[])))

(7) date-compare-gt(find[], find[])

(8) time-diff(find[], find[]), and their versions with find-min-num or date-compare-lt.

For questions with a program in (1) - (6), we appendWhat were the to the program’s find argument

to construct a paired question. We annotate this paired question with the program spans(find[]), and

enforce consistency among the find modules. Such a construction allows us to indirectly enforce

consistency among multiple related questions via the constructed question; see Figure 15.

For questions with a program in (7) - (8), we append When did the to the two find modules’ argu-

ments and construct two paired questions, one for each find operation. We label the constructions

with find-date(find[]) and enforce consistency among the findmodules. For example,Howmany

years after the Battle of Rullion Green was the Battle of Drumclog? would result in the construction

ofWhen did the Battle of Rullion Green? andWhen did the Battle of Drumclog?. While this method

can lead to ungrammatical questions, it should help in decomposing the two find executions.

Inverting Superlatives For questions with a program in (3) - (6) or its find-min-num equivalent,

we construct a paired question by replacing the superlative in the question with its antonym (e.g.

largest → smallest) and inverting the min/max module. We enforce consistency among the find

80

modules of the original and the paired question.

Model-generated Paired Examples

We show how question generation (QG) models (Du et al., 2017; Krishna and Iyyer, 2019) can be

used to generate paired questions. QG models are seq2seq models that generate a question corre-

sponding to an answer spanmarked in a passage as input. We followWang et al. (2020) and fine-tune

a BART model (Lewis et al., 2020) on SQuAD (Rajpurkar et al., 2016) to use as a QG model.

We generate paired questions for non-football passages in DROP by randomly choosing 10 numbers

and dates as answer spans, and generating questions for them. We assume that the generated ques-

tions are SQuAD-like—they query an argument about an event/entity mentioned in text—and label

themwith the program find-num(find) or find-date(find). We use the whole question apart from

theWh-word as the string argument to find. We then follow the same procedure as §5.3.1—for each

of the find module in a DROP question’s program, we see if a generated question with a seman-

tically similar find module exists. If such an augmented question is found, it is used as a paired

example for the DROP question to enforce consistency between the find modules. For example,

How many percentage points did the population of non-Hispanic Whites drop from 1990 to 2010?

is paired with the generated question What percentage of the population was non-Hispanic Whites

in 2010?.

5.4 Experimental Setup

This section describes the dataset used for training and evaluation, details about the number of paired

examples we use from different techniques, the details of our model, and the baseline approaches

used in the experiments for comparison.

5.4.1 Dataset

We perform experiments on a portion of the DROP dataset (Dua et al., 2019) that is composed of

two subsets: (1) the subset of DROP used in Chapter 3—this contains 3881 passages and 19204 ques-

81

tions; and (2) question-decompositionmeaning representation (QDMR) annotations fromBreak (Wolf-

son et al., 2020)—this contains 2756 passages with a total of 4762 questions. After removing dupli-

cate questions we are left with 23215 questions in total. All questions in our dataset contain program

annotations (heuristically annotated questions from Chapter 3 and crowd-sourced question decom-

positions in Break). We convert the program annotations in QDMR to programs that conform to

the grammar induced by the modules in Text-NMN using simple transformations. For an i.i.d. split,

since the DROP test set is hidden, we split the training set into train/validation and use the provided

validation set as the test set. Our train / validation / test sets contain 18299 / 2460 / 2456 questions,

respectively.

Paired Training Data In the training data, we found 7018 naturally-occurring pairings for 6039

questions (§5.3.1); construct template-based paired examples for 10882 questions (§5.3.2); and gen-

erate 2632 questions paired with 2079 DROP questions (§5.3.2).

5.4.2 Training Objective

We use these paired examples to compute Lpaired, which is added as an additional training objective

on top of the standard training regime for Text-NMN We simply add the paired objective Lpaired

to the training objective of Text-NMN (Gupta et al., 2020a) which includes a maximum likelihood

objective to predict the gold program, a maximum likelihood objective for gold answer prediction

from the program execution, and an unsupervised auxiliary loss to aid information extraction. We

do not use any heuristically-obtained intermediate module output supervision used in Chapter 3.

Note that we do not add any additional (question, answer) pairs to the data, only new (unlabeled)

questions.

5.4.3 Model Details

All models use the bert-base-uncased model to compute the question and passage contextualized

representations. For all experiments (including all baselines), we train two versions of the model

with different seed values, and choose the one that results in higher validation performance. All

models are trained for a maximum number of 40 epochs, with early stopping if validation F1 does

82

Model
dev test

F1 EM F1 EM

MTMSN 66.2 62.4 72.8 70.3

NMN Baseline 62.6 58.0 70.3 67.0
NMN + Lpaired, found 66.0 61.5 71.0 67.8
NMN + Lpaired, temp 66.2 61.4 72.3 69.2
NMN + Lpaired, qgen 63.7 58.9 71.2 68.4
NMN + Lpaired, all 66.3 61.6 73.5 70.5

Table 5: Performance on DROP (pruned): Using our paired objective with all different kinds of
paired-data leads to improvements in NMN. Model achieves the best performance when all kinds of
paired-data are used together.

not improve for 10 consecutive epochs. We use a batch size of 2 (constrained by a 12GB GPU) and

a learning rate of 1e-5. The question parser in the Text-NMN uses a 100-dimensional, single-layer

LSTM decoder. Our code is written using the AllenNLP library (Gardner et al., 2018).

5.4.4 Baseline Approaches

As we are studying the impact of our new paired learning objective, our main point of comparison is

our Text-NMN trained without that objective. Though the focus of our work is improving learning

in structured interpretable models, we also show results from a strong, reasonably comparable black-

box model for DROP, MTMSN (Hu et al., 2019), to better situate the relative performance of this

class of models.

Model Performance
(F1 Score)

Overall Faithfulness
(cross-entropy∗ ↓)

Module-wise Faithfulness∗ (↓)

find filter num-date† project min-max†

NMN 70.3 46.3 14.3 21.0 30.6 0.9 1.4
NMN + Lpaired, all 73.5 13.0 4.4 5.7 8.3 1.4 1.2

Table 6: Faithfulness scores: Using the paired objective significantly improves intermediate output
predictions. †denotes the average of find-num & find-date and find-min-num & find-max-num.

83

5.5 Results

5.5.1 In-distribution Performance

We first evaluate the impact of our proposed paired objective on in-distribution generalization. Ta-

ble 5 shows the performance of the NMNs, trained with and without the paired objective, using

different types of paired examples. We see that the paired objective always leads to improved per-

formance; test F1 improves from 70.3 F1 for the vanilla NMN to (a) 71 F1 using naturally-occurring

paired examples (Lpaired, found), (b) 72.3 F1 using template-based paired examples (Lpaired, temp), and

(c) 71.2 F1 using model-generated paired examples (Lpaired, qgen). Further, the model achieves the

best performance when all kinds of paired examples are combined, improving the performance to

73.5 F1 (Lpaired, all). The improvement over the baseline is statistically significant (p = 0.01) based

on the Student’s t-test. Test numbers are much higher than dev since the test set contains 5 answer

annotations for each question. Our final model also outperforms the black-box MTMSN model.

5.5.2 Measuring Faithfulness of NMN execution

As observed in Chapter 4, training a NMN only using the end-task supervision can lead to learned

modules whose behaviour is unfaithful to their intended reasoning operation, even when trained and

evaluated with gold programs. That is, even though the NMNmight produce the correct final output,

the outputs of the modules are not as expected according to the program (e.g., outputting only the

longest field goal for the find[field goal] execution), and this leads tomarkedly worse generalization

onDROP.We evaluate whether the use of our paired objective to indirectly supervise latent decisions

(module outputs) in a NMN indeed leads to more faithful execution. We use the module output

annotations, i.e., the correct spans that should be output by each module in a program, from Chapter

4, and report the proposed cross-entropy-based metric to quantify the divergence between the output

distribution over passage tokens and the annotated spans. A lower value of this metric denotes better

faithfulness of the produced outputs.

In Table 6 we see that the NMN trained with the proposed paired objective greatly improves the

84

Model
Complex Arithmetic Filter-ArgMax

dev test w/o G.P. test w/ G.P. dev test w/o G.P. test w/ G.P.

MTMSN 67.3 44.1 67.5 59.3

NMN 64.3 29.5 42.1 65.0 55.6 59.7
NMN + Lpaired, all 67.2 47.2 54.7 65.5 62.3 71.5

Table 7: Measuring compositional-generalization: NMN performs substantially better when trained
with the paired objective and performs even better when gold-programs are used for evaluation (w/
G.P).

overall faithfulness (46.3 → 13.0) and also leads to huge improvements in most modules. This

faithfulness evaluation shows that enforcing consistency between shared substructures provides the

model with a dense enough training signal to learn correct module execution. That is, not only does

the model performance improve by using the paired objective, this faithfulness evaluation shows

that the model’s performance is improving for the right reasons. In §5.5.4 we explore how this

faithfulness is actually achieved.

5.5.3 Evaluating Compositional Generalization

Ou primary objective of developing a compositional structured models is that the explicit structure

should help the model learn reusable operations that generalize to novel contexts. We test this

capability using the compositional generalization setup of Finegan-Dollak et al. (2018), where the

model is tested on questions whose program templates are unseen during training. In our case, this

tests whether module executions generalize to new contexts in a program.

We create two test sets to measure our model’s capability to generalize to such out-of-distribution

examples. In both settings, we identify certain program templates to keep in a held-out test set, and

use the remaining questions for training and validation purposes.

Complex Arithmetic This test set contains questions that require addition and subtraction opera-

tions in complex contexts: questions whose program contains num-add/num-diff as the root node,

but the program is not the simple addition or subtraction template num-add/num-diff(find-num(find),

find-num(find)). For example, How many more mg/L is the highest amount of arsenic in drinking

85

Model
Test F1 Faithful.-

score (↓)Overall Min-Max Count

NMN 57.4 82.1 36.2 110.4
+ Lmax+min 60.9 85.5 39.7 56.5
+ Lmax+count 60.8 81.4 43.0 99.2
+ Lmax+min+count 71.1 85.4 58.8 25.9

Table 8: Using constructed paired examples for all three types of questions—min, max, and count—
leads to dramatically better count performance. Without all three, the model finds shortcuts to satisfy
the consistency constraint and does not learn correct module execution.

water linked to skin cancer risk than the lowest mg/L amount?, with program

num-diff(find-num(find-max-num(find)), find-num(find-min-num(find))).

Filter-Argmax This test set contains questions that require an argmax operation after filter: pro-

grams that contain the subtree find-max-num/find-min-num(filter(·)). For example,Who scored

the shortest touchdown in the first half?, with program project(find-max-num(filter(find))).

Performance In Table 7we see that aNMNusing our paired objective outperforms both the vanilla

NMN and the black-box MTMSN on both test sets.2 This shows that enforcing consistent module

behavior also improves their performance in novel contexts and as a result allows the model to gener-

alize to out-of-distribution examples. We see a further dramatic improvement in performance when

the model is evaluated using gold programs. This is not surprising since it is known that semantic

parsers (including the one in our model) often fail to generalize compositionally (Finegan-Dollak

et al., 2018; Lake and Baroni, 2018; Bahdanau et al., 2019). Recent advancements in semantic

parsing models that aim at compositional generalization should help improve overall model perfor-

mance (Lake, 2019; Korrel et al., 2019; Herzig and Berant, 2020).

5.5.4 Analysis

We perform an analysis to understand how augmented paired examples—ones that do not contain

end-task supervision—help in improving latent decision predictions. We conduct an experiment on
2The test set size is quite small, so while the w/ G.P. results are significantly better than MTMSN (p = 0.05), we can’t

completely rule out noise as the cause for w/o G.P. outperforming MTMSN (p = 0.5), based on the Student’s t-test.

86

a subset of the data containing only min, max and count type questions; programs in (1)-(6) from

§5.3.2. We see a dramatic improvement over the baseline in count-type performance when paired

examples for all three types of questions are used; answer-F1 improves from 36.2 → 58.8, and

faithfulness from 110.4 → 25.9. This verifies that without additional supervision the model does

indeed perform the min/max operation internal to its parameters and ground to the output event

instead of performing the correct find operation (§5.2.1). As a result, the find computation that

should be shared with the count questions is not actually shared, hurting performance. By indirectly

constraining the find execution to produce consistent outputs for all three types of questions via the

constructed question (Fig. 15), the model learns to correctly execute find, resulting in much better

count performance. Using paired examples only for max and count questions (Lmax+count) does not

constrain the find operation sufficiently—themodel has freedom to optimize the paired objective by

learning to incorrectly ground to the max-event mention for both the original and constructed ques-

tion’s find operation. This analysis reveals that augmented paired examples are most useful when

they form enough indirect connections between different types of instances to densely characterize

the decision boundary around the latent decisions.

5.6 Related Approaches

Our approach generalizes a few previous methods for learning via paired examples. For learning

to ground tokens to image regions, Gupta et al. (2020b) enforce contrastive grounding between the

original and a negative token; this is equivalent to using an appropriate S in our framework. A few

approaches (Minervini and Riedel, 2018; Li et al., 2019; Asai and Hajishirzi, 2020) use an additional

objective on final outputs to enforce domain-specific consistency between paired examples; this is a

special case of our framework where S is used on the outputs (yi, yj), instead of the latent decisions.

More generally, the challenge in learning models for complex problems can be viewed as the emer-

gence of artificially simple decision boundaries due to data sparsity and the presence of spurious

dataset biases (Gardner et al., 2020). To counter data sparsity, data augmentation techniques have

been proposed to provide a compositional inductive bias to the model (Chen et al., 2020; Andreas,

2020) or induce consistent outputs (Ribeiro et al., 2019; Asai and Hajishirzi, 2020). However, their

87

applicability is limited to problems where the end-task supervision for the augmented examples can

be easily inferred. To counter dataset biases, model-based data pruning (Bras et al., 2020) and sub-

sampling (Oren et al., 2020) have been proposed. All these techniques modify the training-data dis-

tribution to remove a model’s propensity to find artificially simple decision boundaries, whereas we

modify the training objective to try to accomplish the same goal. Ensemble-based training method-

ology (Clark et al., 2019; Stacey et al., 2020) has been proposed to learn models robust to dataset

artifacts; however, they require prior knowledge about the kind of artifacts present in the data.

Our approach, in spirit, is related to a large body of work on learning structured latent variable

models. For example, prior work has incorporated indirect supervision via constraints (Graca et al.,

2007; Chang et al., 2007; Ganchev et al., 2010) or used negative examples with implausible latent

structures (Smith and Eisner, 2005; Chang et al., 2010). These approaches use auxiliary objectives

on a single training instance or global conditions on posterior distributions, whereas our training

objective uses paired examples.

5.7 Summary

In thi chapter, we proposed a method to leverage paired examples—instances that share internal

substructure—to provide a richer training signal to latent decisions in compositional model archi-

tectures. We provide a general formulation of this technique which should be applicable to a broad

range of models. To validate this technique, we present a case study on our text-based neural module

networks described in the previous chapters, showing how to apply the general formulation to a spe-

cific task. We explore three methods to acquire paired examples in this setting and empirically show

that our approach leads to substantially better in- and out-of-distribution generalization of a neural

module network in complex compositional question answering. We also show that using our paired

objective leads to improved prediction of latent decisions. A lot of recent work is exploring the use

of closely related instances for improved evaluation and training. Ours is one of the first works to

show substantial improvements by modifying the training objective to try to make better use of the

local decision surface. These results should encourage more work exploring this direction.

88

Chapter 6

Enforcing Consistency in Weakly Super-

vised Semantic Parsing

In this chapter, we shift our focus from question answering over text to weakly-supervised semantic

parsing. In this setting, only (utterance, denotation) supervision is available and the semantic parse

is treated as a structured latent variable that needs to be inferred from the denotation alone. A key

challenge in training semantic parsers using such weak supervision is the presence of spurious pro-

grams—incorrect representations that evaluate to the correct denotation. This is analogous to the

issue we saw in the previous chapters where, the absence of supervision for the module outputs in

NMN and the fact that incorrect module outputs can still lead to the correct answer, makes learning

difficult. In this chapter, we explore whether we can use our idea of enforcing consistency in the la-

tent semantic parse of related utterances to improve learning in a weakly-supervised Seq2Seq-based

semantic parser. This chapter is based on work originally described in Gupta et al. (2021a).

6.1 Introduction

Semantic parsers map a natural language utterance into an executable meaning representation, called

a logical form or program (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005). Till now,

89

they have formed a crucial component of question understanding in our neural module network for

reasoning over text. In NMNs, the semantic parse is composed of learnable neural-network modules

to execute over unstructured context. Traditionally, the programs in semantic parsers are composed

of predicates in a logical language with pre-defined execution, and are executed against a structured-

context (e.g., database, graph, etc.) to produce a denotation (e.g., answer) for the input utterance.

Methods for weakly-supervised semantic parsing, i.e., training semantic parsers from only (utterance,

denotation) supervision have been developed (Clarke et al., 2010; Liang et al., 2011; Berant et al.,

2013); however, training from such weak supervision is challenging. The semantic parse of the

utterance is treated as a structured latent variable in such models. The parser needs to search for

the correct program from an exponentially large space, and the presence of spurious programs—

incorrect representations that evaluate to the correct denotation—greatly hampers learning. Several

strategies have been proposed to mitigate this issue Guu et al. (2017); Liang et al. (2018); Dasigi

et al. (2019). Typically these approaches consider a single input utterance at a time and explore ways

to score programs.

In this chapter, we use our idea of paired training to encourage consistency between the output

programs of related natural language utterances to mitigate the issue of spurious programs. Consider

related utterances, There are two boxes with three yellow squares and There are three yellow squares,

both containing the phrase three yellow squares. Ideally, the correct programs for the utterances

should contain similar sub-parts that corresponds to the shared phrase. To incorporate this intuition

during search, we propose a consistency-based reward to encourage programs for related utterances

that share sub-parts corresponding to the shared phrases . By doing so, the model is provided with an

additional training signal to distinguish between programs based on their consistency with programs

predicted for related utterances.

We also show the importance of designing the logical language in a manner such that the ground-

truth programs for related utterances are consistent with each other. Such consistency in the logical

language would facilitate the consistency-based training proposed above, and encourage the seman-

tic parser to learn generalizable correspondence between natural language and program tokens. We

90

Figure 16: Utterance x and its program candidates z1-z4, all of which evaluate to the correct de-
notation (True). z2 is the correct interpretation; other programs are spurious. Related utterance x′
shares the phrase yellow object above a black object with x. Our consistency reward would score
z2 the highest since it maps the shared phrase most similarly compared to z′.

perform experiments on the Natural Language Visual Reasoning dataset (NLVR; Suhr et al., 2017),

and find that in the previously proposed logical language, the use of macros leads to inconsistent

interpretations of a phrase depending on its context. We propose changes to this language such that

a phrase in different contexts can be interpreted by the same program parts.

6.2 Background

Natural Language Visual Reasoning (NLVR) dataset contains human-written natural language

utterances, where each utterance is paired with 4 synthetically-generated images. Each (utterance,

image) pair is annotated with a binary truth-value denotation. Each image is divided into three boxes,

where each box contains 1-8 objects. Each object has four properties: position, color, shape, and

size. A structured representation of each image is also provided, which we use in this paper.

Weakly supervised iterative search parser We use the semantic parser of Dasigi et al. (2019) as

our base-parser, which is a grammar-constrained encoder-decoder with attention model from Krish-

namurthy et al. (2017). It learns to map a natural language utterance x into a program z such that it

evaluates to the correct denotation y = JzKr when executed against the structured image representa-
91

tion r. Dasigi et al. (2019) use a manually-designed, typed, variable-free, functional query language

for NLVR.

Given a dataset of triples (xi, ci, yi), where xi is an utterance, ci is the set of images associated

to it, and yi is the set of corresponding denotations, their approach iteratively alternates between

two phases to train the parser: Maximum marginal likelihood (MML) and a Reward-based method

(RBM). In MML, for an utterance xi, the model maximizes the marginal likelihood of programs

in a given set of logical forms Zi, all of which evaluate to the correct denotation. The set Zi is

constructed either by performing a heuristic search, or generated from a trained semantic parser.

The reward-based method maximizes the (approximate) expected value of a reward functionR.

max
θ

∑
∀i

Ep̃(zi|xi;θ)R(xi, zi, ci, yi) (6.1)

Here, p̃ is the re-normalization of the probabilities assigned to the programs on the beam, and the

reward function R = 1 if zi evaluates to the correct denotation for all images in ci, or 0 otherwise.

Please refer Dasigi et al. (2019) for details.

6.3 Consistency Reward for Programs

Consider the utterance x = There is a yellow object above a black object in Figure 16. There are

many program candidates decoded in search that evaluate to the correct denotation. Most of them

are spurious, i.e., they do not represent the meaning of the utterance and only coincidentally evaluate

to the correct output. The semantic parser is expected to distinguish between the correct program

and spurious ones by identifying correspondence between parts of the utterance and the program

candidates. Consider a related utterance x′ = There are 2 boxes with a yellow object above a black

object. The parser should prefer programs forx andx′which contain similar sub-parts corresponding

to the shared phrase p = yellow object above a black object. That is, the parser should be consistent in

its interpretation of a phrase in different contexts. To incorporate this intuition during program search,

we propose an additional reward to programs for an utterance that are consistent with programs for

92

a related utterance.

Specifically, consider two related utterances x and x′ that share a phrase p. We compute a reward for

a program candidate z of x based on how similarly it maps the phrase p as compared to a program

candidate z′ of x′. To compute this reward we need (a) relevant program parts in z and z′ that

correspond to the phrase p, and (b) a consistency reward that measures consistency between those

parts.

(a) Relevant program parts Our semantic parser (from Krishnamurthy et al. (2017)) outputs a

linearized version of the program z = [z1, . . . , zT], decoding one action at a time from the logical

language. At each time step, the parser predicts a normalized attention vector over the tokens of the

utterance, denoted by [at1, . . . , a
t
N] for the zt action. Here,

∑N
i=1 a

t
i = 1 and ati ≥ 0 for i ∈ [1, N].

We use these attention values as a relevance score between a program action and the utterance tokens.

Given the phrase p with token span [m,n], we identify the relevant actions in z as the ones whose

total attention score over the tokens in p exceeds a heuristically-chosen threshold τ = 0.6.

A(z, p) =
{
zt
∣∣ t ∈ [1, T] and

n∑
i=m

ati ≥ τ
}

(6.2)

This set of program actions A(z, p) is considered to be generated due to the phrase p. For example,

for utterance There is a yellow object above a black object, with program

objExists(yellow(above(black(allObjs))), this approach could identify that for the phrase

yellow object above a black object the actions corresponding to the functions yellow, above, and

black are relevant.

(b) Consistency reward Given a related program z′ and its relevant action set A(z′, p), we de-

fine the consistency reward S(z, z′, p) as the F1 score for the action set A(z, p) when compared to

A(z′, p). Since we only consider a single paired phrase between x and x′, the consistency reward

between the programs z and z′ can be written as S(z, z′, p).

As we do not know the gold program for x′, we decode top-K program candidates using beam-search

93

and discard the ones that do not evaluate to the correct denotation. We denote this set of programs

by Z ′
c. Now, to compute a consistency reward C(x, z, x′) for the program z of x,we take a weighted

average of S(z, z′) for different z′ ∈ Z ′
c where the weights correspond to the probability of the

program z′ as predicted by the parser.

C(x, z, x′) =
∑
z′∈Z′

c

p̃(z′|x′; θ)S(z, z′) (6.3)

Consistency reward based parser Given x and a related utterance x′, we use C(x, z, x′) as an

additional reward in Eq. 6.1 to upweight programs for x that are consistent with programs for x′.

max
θ

∑
∀i

Ep̃(zi|xi;θ)

[
R(xi, zi, ci, yi) + C(xi, zi, x′i)

]
(6.4)

This consistency-based reward pushes the parser’s probability mass towards programs that have

consistent interpretations across related utterances, thus providing an additional training signal over

simple denotation accuracy.

6.4 Consistency in Language

The consistency reward (§6.3) makes a key assumption about the logical language in which the ut-

terances are parsed: that the gold programs for utterances sharing a natural language phrase actually

correspond to each other. For example, that the phrase yellow object above a black object would

always get mapped to yellow(above(black)) irrespective of the utterance it occurs in.

On analyzing the logical language of Dasigi et al. (2019), we find that this assumption does not hold

true. Let us look at the following examples:

x1: There are items of at least two different colors

z1: objColorCountGrtEq(2, allObjs)

x2: There is a box with items of at least two different colors

z2: boxExists(memberColorCountGrtEq(2,allBoxes))

Here the phrase items of at least two different colors is interpreted differently in the two utterances. In

94

x2, amacro function memberColorCountGrtEq is used, which internally calls objColorCountGrtEq

for each box in the image. Now consider,

x3: There is a tower with exactly one block

z3: boxExists(memberObjCountEq(1,allBoxes))

x4: There is a tower with a black item on the top

z4: objExists(black(top(allObjs)))

Here the phrase There is a tower is interpreted differently: z3 uses a macro for filtering boxes based

on their object count and interprets the phrase using boxExists. In the absence of a complex macro

for checking black item on the top, z4 resorts to using objExists making the interpretation of the

phrase inconsistent. These examples highlight that these macros, while they shorten the search for

programs, make the language inconsistent.

We make the following changes in the logical language to make it more consistent. Recall from

§6.2 that each NLVR image contains 3 boxes each of which contains 1-8 objects. We remove macro

functions like memberColorCountGrtEq, and introduce a generic boxFilter function. This function

takes two arguments, a set of boxes and a filtering function f: Set[Obj] → bool, and prunes the

input set of boxes to the ones whose objects satisfies the filter f. By doing so, our language is able to

reuse the same object filtering functions across different utterances. In this new language, the gold

program for the utterance x2 would be

z2: boxCountEq(1, boxFilter(allBoxes, objColorCountGrtEq(2)))

By doing so, our logical language can now consistently interpret the phrase items of at least two

different colors using the object filtering function f: objColorCountGrtEq(2) across both x1 and

x2. Similarly, the gold program for x4 in the new logical language would be

z4: boxExists(boxFilter(allBoxes, black(top)))

making the interpretation of There is a box consistent with x3.

Details about our logical language In Figure 17, we show an example utterance with its gold

program according to our proposed logical language. We use function composition and function

currying to maintain the variable-free nature of our language. For example, action z7 uses function

95

composition to create a function from Set[Object] → bool by composing two functions, from

Set[Object] → bool and Set[Object] → Set[Object]. Similarly, action z11 creates a function

from Set[Object]→ Set[Object] by composing two functions with the same signature.

Actions z8 - z10 use function currying to curry the 2-argument function objectCountGtEq by giv-

ing it one int=2 argument. This results in a 1-argument function objectCountGtEq(2) from

Set[Object]→ bool.

x: There is one box with at least 2 yellow squares
z: boxCountEq(1, boxFilter(allBoxes, objectCountGtEq(2)(yellow(square))))

Program actions for z:
z1: bool → [<int,[Set[Box]:bool>, int, Set[Box]]
z2: <int,[Set[Box]:bool>→ boxCountEq
z3: int → 1
z4: Set[Box] → [<Set[Box],<Set[Obj]:bool>:Set[Box]>, Set[Box], <Set[Obj]:bool>]
z5: <Set[Box],<Set[Obj]:bool>:Set[Box]>→ boxFilter
z6: Set[Box] → allBoxes
z7: <Set[Obj]:bool>→ [*, <Set[Obj]:bool>, <Set[Obj]:Set[Obj]>]
z8: <Set[Obj]:bool>→ [<int,Set[Obj]:bool>, int]
z9: <int,Set[Obj]:bool>→ objectCountGtEq
z10: int → 2
z11: <Set[Obj]:Set[Obj]>→ [*, <Set[Obj]:Set[Obj]>, <Set[Obj]:Set[Obj]>]
z12: <Set[Obj]:Set[Object]>→ yellow
z13: <Set[Obj]:Set[Object]>→ square

Figure 17: Gold program actions for the utterance There is one box with at least 2 yellow squares
according to our proposed logical language. The grammar-constrained decoder outputs a linearized
abstract-syntax tree of the program in an in-order traversal.

6.5 Experiments

6.5.1 Dataset

We report results on the standard development, public-test, and hidden-test splits of NLVR. The

training data contains 12.4k (utterance, image) pairs where each of 3163 utterances are paired with

4 images. Each evaluation set roughly contains 270 unique utterances.

96

6.5.2 Evaluation Metrics

(1) Accuracy measures the proportion of examples for which the correct denotation is predicted.

(2) Since each utterance in NLVR is paired with 4 images, a consistency metric is used, which

measures the proportion of utterances for which the correct denotation is predicted for all associated

images. Improvement in this metric is indicative of correct program prediction as it is unlikely for

a spurious program to correctly make predictions on multiple images.

6.5.3 Experimental Details

We use the same parser, training methodology, and hyper-parameters as Dasigi et al. (2019). To

discover related utterance pairs within the NLVR dataset, we manually identify 11 sets of phrases

that commonly occur in NLVR and can be interpreted in the same manner:

1. { COLOR block at the base, the base is COLOR }

2. { COLOR block at the top, the top is COLOR }

3. { COLOR1 object above a COLOR2 object }

4. { COLOR1 block on a COLOR2 block, COLOR1 block over a COLOR2 block }

5. { a COLOR tower }

6. { there is one tower, there is only one tower, there is one box, there is only one box }

7. { there are exactly NUMBER towers, there are exactly NUMBER boxes }

8. { NUMBER different colors }

9. { with NUMBER COLOR items, with NUMBER COLOR blocks, with NUMBER COLOR

objects }

10. { at least NUMBER COLOR items, at least NUMBER COLOR blocks, at least NUMBER

COLOR objects }

97

Model
Dev Test-P Test-H

Acc. Cons. Acc. Cons. Acc. Cons.

Abs. Sup. (Goldman et al., 2018) 84.3 66.3 81.7 60.1 - -
Abs. Sup. + ReRank (Goldman et al., 2018) 85.7 67.4 84.0 65.0 82.5 63.9
Iterative Search (Dasigi et al., 2019) 85.4 64.8 82.4 61.3 82.9 64.3
+ Logical Language Design (ours) 88.2 73.6 86.0 69.6 - -
+ Consistency Reward (ours) 89.6 75.9 86.3 71.0 89.5 74.0

Table 9: Performance on NLVR: Design changes in the logical language and consistency-based
training, both significantly improve performance. Larger improvements in consistency indicate that
our approach efficiently tackles spurious programs.

11. { with NUMBER COLOR SHAPE, are NUMBER COLOR SHAPE, with only NUMBER

COLOR SHAPE, are only NUMBER COLOR SHAPE }

In each phrase, we replace the abstract COLOR, NUMBER, SHAPE token with all possible options

from the NLVR dataset to create grounded phrases. For example, black block at the top, yellow

object above a blue object. For each set of equivalent grounded phrases, we identify the set of

utterances that contains any of the phrase. For each utterance in that set, we pair it with 1 randomly

chosen utterance from that set. Overall, we identify related utterances for 1420 utterances (out of

3163) and make 1579 pairings in total; if an utterance contains two phrases of interest, it can be

paired with more than 1 utterance.

6.5.4 Baselines

We compare against the state-of-the-art models; Abs. Sup. Goldman et al. (2018) that uses abstract

examples, Abs. Sup. + ReRank that uses additional data and reranking, and the iterative search

parser of Dasigi et al. (2019).

6.5.5 Results

Table 9 compares the performance of our two proposed methods to enforce consistency in the de-

coded programs with the previous approaches. We see that changing the logical language to a more

consistent one (§6.4) significantly improves performance: the accuracy improves by 2-4% and con-

98

sistency by 4-8% on the dev. and public-test sets. Additionally, training the parser using our pro-

posed consistency reward (§6.3) further improves performance: accuracy improves by 0.3-0.4% but

the consistency significantly improves by 1.4-2.3%.1 On the hidden-test set of NLVR, our final

model improves accuracy by 7% and consistency by 10% compared to previous approaches. Larger

improvements in consistency across evaluation sets indicates that our approach to enforce consis-

tency between programs of related utterances greatly reduces the impact of spurious programs.

6.6 Summary

In this chapter, we applied our paired training approach to weakly-supervised semantic parsing to

mitigate the issue of spurious programs by enforcing consistency between latent output programs.

We proposed two approaches for enforcing consistency. First, a consistency based reward that bi-

ases the program search towards programs that map the same phrase in related utterances to similar

sub-parts. Such a reward provides an additional training signal to the model by leveraging related

utterances. Second, we demonstrate the importance of logical language design such that it facili-

tates such consistency-based training. The two approaches combined together lead to significant

improvements in the resulting semantic parser. Combined with the results of the previous chap-

ter, we show that the idea of using related examples that share internal substructure can be used to

provide auxiliary supervision for latent decisions in diverse compositional language understanding

problems.

1We report average performance across 10 runs trained with different random seeds. All improvements in consistency
are statistically significant (p-value < 0.05) based on the stochastic ordering test Dror et al. (2019).

99

Chapter 7

NeuralCompositional Denotational Seman-

tics for Question Answering

Previous chapters used neural seq2seq models for question understanding, by first encoding it is

a dense vector using an encoder-LSTM, then decoding a logical form (or program) representation

by using a different decoder-LSTM. The denotation for the question is computed by executing this

program against the context. Though, this approach aims to model the compositional structure of

the question, it differs from formal approaches to compositional semantics that hypothesize that sub-

expressions in language can be interpreted independently of their context. Lack of this independence

allows the seq2seq models to latch onto unintended correlations and hampers their systematic gen-

eralization (Lake and Baroni, 2018). In this chapter, we propose a question understanding approach

inspired by formal approaches to semantics. Instead of representing the complete question as a dense

representation, each constituent span in the question is represented by a denotation in the context (a

knowledge-graph in this case) and a vector that captures ungrounded aspects of meaning. Similar

to NMNs, learnable composition modules recursively combine constituent spans, culminating in a

grounding for the complete question. One crucial manner in which this approach differs from tradi-

tional semantic parsers (and NMNs) is the way in which the modules are defined and parameterized.

In semantic parsers, the predicates (or modules) for performing symbolic operations do not contain

100

any learnable parameters and a different predicate is defined for each symbolic operation, such as

union, disjunctions, negations, existence, etc. Therefore, the scope of reasoning that is capable by

the model is limited to the predicates that are defined in the logical language. In this approach, we

define a small number of higher-order modules which contain their own parameters, but also take as

input parameters from language and learn to perform their symbolic operation via data. By defining

these higher-order modules, we do not limit the reasoning capability of the model to predefined op-

erations. We demonstrate that this approach can learn a variety of challenging semantic operators,

such as quantifiers, disjunctions and composed relations. Learning this model is extremely challeng-

ing, and our demonstration can be considered of an exploratory nature on questions against simple

knowledge-graphs. This chapter is based on work originally described in Gupta and Lewis (2018).

7.1 Introduction

Compositionality is a mechanism by which the meanings of complex expressions are systematically

determined from the meanings of their parts, and has been widely assumed in the study of both

artificial and natural languages (Montague, 1973) as a means for allowing speakers to generalize to

understanding an infinite number of sentences. Popular seq2seq based semantic parsing approaches

use a restricted form of compositionality, typically encoding the utterance word-by-word into a dense

vector representation, then decoding a logical form representation from that vector. Such models

can fail to generalize from training data in surprising ways (Lake and Baroni, 2018; Finegan-Dollak

et al., 2018). In this chapter, we describe a model for question understanding that is inspired by

linguistic theories of compositional semantics. Our approach builds a latent tree of interpretable

expressions over a question, recursively combining constituents using a small set of neural modules.

The questions we consider in this chapter are posed against a knowledge graph (KG) as context.

Our approach resembles Montague semantics, in which a tree of interpretable expressions is built

over the sentence, with nodes combined by a small set of composition functions. However, both the

structure of the sentence and the composition functions are learned by end-to-end gradient descent.

To achieve this, we define the parametric form of small set of composition modules, and then build

a parse chart over each question subsuming all possible trees. Each node in the chart represents a

101

what is left of a red thing or not cylindrical
EV

E

EV

E

E

R

E
E

VE

E
E

�

E
E

above

above

above

left

above

left

left

left

���

Figure 18: A correct parse for a question given the knowledge graph on the right, using our model.
We show the type for each node, and its denotation in terms of the knowledge graph. The words or
and not are represented by vectors, which parameterize composition modules. The denotation for
the complete question represents the answer to the question. Nodes here have types E for sets of
entities, R for relations, V for ungrounded vectors, EV for a combination of entities and a vector,
and ϕ for semantically vacuous nodes. While we show only one parse tree here, our model builds a
parse chart subsuming all trees.

span of text with a distribution over groundings (in terms of booleans and knowledge graph nodes

and edges), as well as a vector representing aspects of the meaning that have not yet been grounded.

The representation for a node is built by taking a weighted sum over different ways of building the

node (similar to Maillard et al. (2017)). Our approach imposes independence assumptions that give

a linguistically motivated inductive bias. In particular, it enforces that phrases are interpreted inde-

pendently of surrounding words, allowing the model to generalize naturally to interpreting phrases

in different contexts. Experiments on two datasets—one generated synthetically from a pre-defined

grammar, and one containing questions written by humans (Referring Expressions (FitzGerald et al.,

2013))—demonstrates the feasbility of our approach.

7.2 Model Overview

Our task is to answer a question q = w1..|q|, with respect to a Knowledge Graph (KG) consisting

of nodes E (representing entities) and labelled directed edgesR (representing relationship between

entities). In our task, answers are either booleans, or specific subsets of nodes from the KG.

102

Our model builds a parse for the sentence, in which phrases are grounded in the KG, and a small

set of composition modules are used to combine phrases, resulting in a grounding for the complete

question sentence that answers it. For example, in Figure 18, the phrases not and cylindrical are

interpreted as a function word and an entity set, respectively, and then not cylindrical is interpreted

by computing the complement of the entity set.

The node at the root of the parse tree is the answer to the question. Our model answers questions by:

(a) Grounding individual tokens in a KG, that can either be grounded as particular sets of entities

and relations in the KG, as ungrounded vectors, or marked as being semantically vacuous. For

each word, we learn parameters that are used to compute a distribution over semantic types and

corresponding denotations in a KG (§ 7.3.1).

(b) Combining representations for adjacent phrases into representations for larger phrases, using

trainable neural composition modules (§ 7.3.2). This produces a denotation for the phrase.

(c) Assigning a binary-tree structure to the question sentence, which determines how words are

grounded, and which phrases are combined using which modules. We build a parse chart subsuming

all possible structures, and train a parsing model to increase the likelihood of structures leading to

the correct answer to questions. Different parses leading to a denotation for a phrase of type t are

merged into an expected denotation, allowing dynamic programming (§ 7.4).

(d) Answering the question, with the most likely grounding of the phrase spanning the sentence.

7.3 Compositional Semantics

7.3.1 Semantic Types

Our model classifies spans of text into different semantic types to represent their meaning as explicit

denotations, or ungrounded vectors. All phrases are assigned a distribution over semantic types. The

semantic type determines how a phrase is grounded, and which composition modules can be used to

103

combine it with other phrases. A phrase spanningwi..j has a denotation Jwi..jKtKG for each semantic

type t. For example, in Figure 18, red corresponds to a set of entities, left corresponds to a set of

relations, and not is treated as an ungrounded vector.

The semantic types we define can be classified into three broad categories.

Grounded Semantic Types: Spans of text that can be fully grounded in the KG.

1. Entity (E): Spans of text that can be grounded to a set of entities in the KG, for example,

red sphere or large cube. E-type span grounding is represented as an attention value for each

entity, [pe1 , . . . , pe|E|], where pei ∈ [0, 1]. This can be viewed as a soft version of a logical

set-valued denotation, which we refer to as a soft entity set.

2. Relation (R): Spans of text that can be grounded to set of relations in the KG, for example, left

of or not right of or above. R-type span grounding is represented by a soft adjacency matrix

A ∈ R|E|×|E| where Aij = 1 denotes a directed edge from ei → ej .

3. Truth (T): Spans of text that can be grounded with a Boolean denotation, for example, Is

anything red?, Is one ball green and are no cubes red?. T-type span grounding is represented

using a real-value ptrue ∈ [0, 1] that denotes the probability of the span being true.

Ungrounded Semantic Types: Spans of text whose meaning cannot be grounded in the KG.

1. Vector (V): This type is used for spans representing functions that cannot yet be grounded

in the KG (e.g. words such as and or every). These spans are represented using 4 different

real-valued vectors v1-v4 ∈ R2-R5, that are used to parameterize the composition modules

described in §7.3.2.

2. Vacuous (ϕϕϕ): Spans that are considered semantically vacuous, but are necessary syntactically,

e.g. of in left of a cube. During composition, these nodes act as identity functions.

104

Partially-Grounded Semantic Types: Spans of text that can only be partially grounded in the

knowledge graph, such as and red or are four spheres. Here, we represent the span by a combination

of a grounding and vectors, representing grounded and ungrounded aspects of meaning respectively.

The grounded component of the representation will typically combine with another fully grounded

representation, and the ungrounded vectors will parameterize the composition module. We define 3

semantic types of this kind: EV,RV and TV, corresponding to the combination of entities, relations

and boolean groundings respectively with an ungrounded vector. Here, the word represented by the

vectors can be viewed as a binary function, one of whose arguments has been supplied.

7.3.2 Composition Modules

Next, we describe how we compose phrase representations (from § 7.3.1) to represent larger phrases.

We define a small set of composition modules, that take as input two constituents of text with their

corresponding semantic representations (grounded representations and ungrounded vectors), and

outputs the semantic type and corresponding representation of the larger constituent. The compo-

sition modules are parameterized by the trainable word vectors. These can be divided into several

categories:

Composition modules resulting in fully grounded denotations: Described in Figure 19.

Composition withϕϕϕ-typed nodes: Phrases with typeϕϕϕ are treated as being semantically transpar-

ent identity functions. Phrases of any other type can combined with these nodes, with no change to

their type or representation.

Composition modules resulting in partially grounded denotations: We define several modules

that combine fully grounded phrases with ungrounded phrases, by deterministically taking the union

of the representations, giving phrases with partially grounded representations (§ 7.3.1). These mod-

ules are useful when words act as binary functions; here they combine with their first argument. For

example, in Fig. 18, or and not cylindrical combine to make a phrase containing both the vectors

for or and the entity set for not cylindrical.

105

large red
EE

E
pei = �

 2

4
w1

w2

b

3

5 ·

2

4
pLei
pRei
1

3

5
!

E + E → E: This module performs a function on a pair of soft
entity sets, parameterized by the model’s global parameter vec-
tor [w1, w2, b] to produce a new soft entity set. The composition
function for a single entity’s resulting attention value is shown.
Such a composition module can be used to interpret compound
nouns and entity appositions. For example, the composition mod-
ule shown above learns to output the intersection of two entity
sets.

not cylindrical
EV

E
pei = �

✓
v1 ·


pRei
1

�◆

V + E→ E: This module performs a function on a soft entity set,
parameterized by a word vector, to produce a new soft entity set.
For example, theword not learns to take the complement of a set of
entities. The entity attention representation of the resulting span is
computed by using the indicated function that takes the v1 ∈ R2

vector of the V constituent as a parameter argument and the entity
attention vector of the E constituent as a function argument.

small or purple

E

EEV
pei = �

v2 ·

2

4
pLei
pRei
1

3

5
!

EV + E → E: This module combines two soft entity sets into
a third set, parameterized by the v2 word vector. This composi-
tion function is similar to a linear threshold unit and is capable
of modeling various mathematical operations such as logical con-
junctions, disjunctions, differences etc. for different values of v2.
For example, the word or learns to model set union.

left of a red cube

E
ER pei = max

ej
Aji · pRej

R + E→ E: This module composes a set of relations (represented
as a single soft adjacency matrix) and a soft entity set to produce
an output soft entity set. The composition function uses the adja-
cency matrix representation of the R-span and the soft entity set
representation of the E-span.

EV

T

is anything cylindrical

True

ptrue = �

v13

"
X

ei

�

 
v33
v43

�
·

pRei
1

�!#
+ v23

!

V +E→T: This module maps a soft entity set onto a soft boolean,
parameterized by word vector (v3). The module counts whether
a sufficient number of elements are in (or out) of the set. For
example, the word any should test if a set is non-empty.

ptrue = �

v14

"
X

ei

�

 2

4
v34
v44
v54

3

5 ·

2

4
pLei
pRei
1

3

5
!#

+ v24

!False

EEV

T

is every cylinder blue

EV + E → T: This module combines two soft entity sets into a
soft boolean, which is useful formodelling generalized quantifiers.
For example, in is every cylinder blue, the module can use the
inner sigmoid to test if an element ei is in the set of cylinders
(pLei ≈ 1) but not in the set of blue things (pRei ≈ 0), and then
use the outer sigmoid to return a value close to 1 if the sum of
elements matching this property is close to 0.

ptrue = �

v2 ·

2

4
pLtrue
pRtrue
1

3

5
!

are 2 balls red and is every cube blue

T

TTV

True

False

False

TV + T→ T: This module maps a pair of soft booleans into a soft
boolean using the v2 word vector to parameterize the composition
function. Similar to EV + E → E, this module facilitates model-
ing a range of boolean set operations. Using the same functional
form for different composition functions allows our model to use
the same ungrounded word vector (v2) for compositions that are
semantically analogous.

Aij = �

v2 ·

2

4
AL

ij

AR
ij

1

3

5
!

left of or above

R
RRV

RV + R → R: This module composes a pair of soft set of rela-
tions to a produce an output soft set of relations. For example, the
relations left and above are composed by the word or to produce
a set of relations such that entities ei and ej are related if either
of the two relations exists between them. The functional form for
this composition is similar to EV + E → E and TV + T → T
modules.

Figure 19: Composition Modules that compose two constituent span representations into the repre-
sentation for the combined larger span, using the indicated equations.

106

7.4 Parsing Model

Here, we describe how our model classifies question tokens into semantic type spans and computes

their representations (§ 7.4.1), and recursively uses the composition modules defined above to parse

the question into a soft latent tree that provides the answer (§ 7.4.2). The model is trained end-to-end

using only question-answer supervision (§ 7.4.3).

7.4.1 Lexical Representation Assignment

Each token in the question sentence is assigned a distribution over the semantic types, and a grounded

representation for each type. Tokens can only be assigned the E, R, V, and ϕϕϕ types. For example,

the token cylindrical in the question in Fig. 18 is assigned a distribution over the 4 semantic types

(one shown) and for the E type, its representation is the set of cylindrical entities.

Semantic Type Distribution for Tokens: To compute the semantic type distribution, our model

represents each word w, and each semantic type t using an embedding vector; vw, vt ∈ Rd. The

semantic type distribution is assigned with a softmax:

p(t|wi) ∝ exp(vt · vwi)

Grounding for Tokens: For each of the semantic type, we need to compute their representations:

1. E-Type Representation: Each entity e ∈ E , is represented using an embedding vector ve ∈ Rd

based on the concatenation of vectors for its properties. For each token w, we use its word

vector to find the probability of each entity being part of the E-Type grounding:

pwei = σ(vei · vw) ∀ ei ∈ E

For example, in Fig. 18, the word red will be grounded as all the red entities.

2. R-Type Representation: Each relation r ∈ R, is represented using an embedding vector vr ∈

107

Rd. For each token wi, we compute a distribution over relations, and then use this to compute

the expected adjacency matrix that forms the R-type representation for this token.

p(r|wi) ∝ exp(vr · vwi)

Awi =
∑
r∈R

p(r|wi) ·Ar

e.g. the word left in Fig. 18 is grounded as the subset of edges with label ‘left’.

3. V-Type Representation: For each word w ∈ V , we learn four vectors v1 ∈ R2, v2 ∈ R3, v3 ∈

R4, v4 ∈ R5, and use these as the representation for words with the V-Type.

4. ϕϕϕ-Type Representation: Semantically vacuous words that do not require a representation.

7.4.2 Parsing Questions

To learn the correct structure for applying composition modules, we use a simple parsing model. We

build a parse-chart over the question encompassing all possible trees by applying all composition

modules, similar to a standard CRF-based PCFG parser using the CKY algorithm. Each node in

the parse-chart, for each span wi..j of the question, is represented as a distribution over different

semantic types with their corresponding representations.

Phrase Semantic Type Potential (ψt
i,j): The model assigns a score, ψt

i,j , to each wi..j span, for

each semantic type t. This score is computed from all possible ways of forming the span wi..j

with type t. For a particular composition of span wi..k of type t1 and wk+1..j of type t2, using the

t1 + t2 → t module, the composition score is:

ψt1+t2→t
i,k,j = ψt1

i,k · ψ
t2
k+1,j · e

θ·f t1+t2→t(i,j,k|q)

where θ is a trainable vector and f t1+t2→t(i, j, k|q) is a simple feature function. Features consist

of a conjunction of the composition module type and: the words before (wi−1) and after (wj+1) the

span, the first (wi) and last word (wk) in the left constituent, and the first (wk+1) and last (wj) word

108

in the right constituent.

The final t-type potential of wi..j is computed by summing scores over all possible compositions:

ψt
i,j =

j−1∑
k=i

∑
(t1+t2→t)
∈Modules

ψt1+t2→t
i,k,j

Combining PhraseRepresentations (Jwi..jKtKG): To computewi..j’s t-type denotation, Jwi..jKtKG,

we compute an expected output representation from all possible compositions that result in type t.

Jwi..jKtKG =
1

ψt
i,j

j−1∑
k=i

Jwi..k..jKtKG

Jwi..k..jKtKG =
∑

(t1+t2→t)
∈Modules

ψt1+t2→t
i,k,j ·Jwi..k..jKt1+t2→t

KG

where Jwi..jKtKG, is the t-type representation of the span wi..j and Jwi..k..jKt1+t2→t
KG is the representa-

tion resulting from the composition of wi..k with wk+1..j using the t1 + t2 → t composition module.

Answer Grounding: By recursively computing the phrase semantic-type potentials and represen-

tations, we can infer the semantic type distribution of the complete question and the resulting ground-

ing for different semantic types t, Jw1..|q|KtKG.

p(t|q) ∝ ψ(1, |q|, t) (7.1)

The answer-type (boolean or subset of entities) for the question is computed using:

t∗ = argmax
t∈T,E

p(t|q) (7.2)

The corresponding grounding is Jw1..|q|Kt∗KG, which answers the question.

109

7.4.3 Training Objective

Given a dataset D of (question, answer, knowledge-graph) tuples, {qi, ai,KGi}i=|D|
i=1 , we train our

model to maximize the log-likelihood of the correct answers. We maximize the following objective:

L =
∑
i

log p(ai|qi,KGi) (7.3)

Further details regarding the training objective are given in Appendix A.

7.5 Experimental Details

7.5.1 Dataset

We experiment with two datasets, 1) Questions generated based on the CLEVR (Johnson et al., 2017)

dataset, and 2) Referring Expression Generation (GenX) dataset (FitzGerald et al., 2013), both of

which feature complex compositional queries.

CLEVRGEN: We generate a dataset of question and answers based on the CLEVR dataset (John-

son et al., 2017), which contains knowledge graphs containing attribute information of objects and

relations between them.

We generate a new set of questions as existing questions contain some biases that can be exploited by

models.1 We generate 75K questions for training and 37.5K for validation. Our questions test var-

ious challenging semantic operators. These include conjunctions (e.g. Is anything red and large?),

negations (e.g. What is not spherical?), counts (e.g. Are five spheres green?), quantifiers (e.g. Is

every red thing cylindrical?), and relations (e.g. What is left of and above a cube?). We create two

test sets:

1. Short Questions: Drawn from the same distribution as the training data (37.5K).
1 Johnson et al. (2017) found that many spatial relation questions can be answered only using absolute spatial infor-

mation, and many long questions can be answered correctly without performing all steps of reasoning. We employ some
simple tests to remove trivial biases from our dataset.

110

2. Complex Questions: Longer questions than the training data (22.5K). This test set contains

the same words and constructions, but chained into longer questions. For example, it contains

questions such asWhat is a cube that is right of a metallic thing that is beneath a blue sphere?

and Are two red cylinders that are above a sphere metallic? Solving these questions require

more multi-step reasoning.

Referring Expressions (GenX) (FitzGerald et al., 2013): This dataset contains human-generated

queries, which identify a subset of objects from a larger set (e.g. all of the red items except for

the rectangle). It tests the ability of models to precisely understand human-generated language,

which contains a far greater diversity of syntactic and semantic structures. This dataset does not

contain relations between entities, and instead only focuses on entity-set operations. The dataset

contains 3920 questions for training, 600 for development and 940 for testing. Our modules and

parsing model were designed independently of this dataset, and we re-use hyperparameters from

CLEVRGEN.

7.5.2 Training Details

Training the model is challenging since it needs to learn both good syntactic structures and the

complex semantics of neural modules—so we use Curriculum Learning (Bengio et al., 2009) to

pre-train the model on an easier subset of questions. Appendix B contains the details of curriculum

learning and other training details.

7.5.3 Baseline Models

We compare to the following baselines. (a)Models that assume linear structure of language, and en-

code the question using linear RNNs—LSTM (NoKG), LSTM,Bi-LSTM, and aRelation-Network (San-

toro et al., 2017) augmented model. 2 (b) Models that assume tree-like structure of language. We

compare two variants of Tree-structured LSTMs (Zhu et al., 2015; Tai et al., 2015)—Tree-LSTM,

that operates on pre-parsed questions, and Tree-LSTM(Unsup.), an unsupervised Tree-LSTMmodel (Mail-

lard et al., 2017) that learns to jointly parse and represent the sentence. For GenX, we also use an
2We use this baseline only for CLEVRGEN since GenX does not contain relations.

111

Model Boolean Questions Entity Set Questions Relation Questions Overall

LSTM (No KG) 50.7 14.4 17.5 27.2
LSTM 88.5 99.9 15.7 84.9
Bi-LSTM 85.3 99.6 14.9 83.6
Tree-LSTM 82.2 97.0 15.7 81.2
Tree-LSTM (Unsup.) 85.4 99.4 16.1 83.6
Relation Network 85.6 89.7 97.6 89.4
Our Model (Pre-parsed) 94.8 93.4 70.5 90.8
Our Model 99.9 100 100 99.9

Table 10: Results for Short Questions (CLEVRGEN): Performance of our model compared to base-
line models on the Short Questions test set. The LSTM (No KG) has accuracy close to chance, show-
ing that the questions lack trivial biases. Our model almost perfectly solves all questions showing
its ability to learn challenging semantic operators, and parse questions only using weak end-to-end
supervision.

end-to-end semantic parsing model from Pasupat and Liang (2015). Finally, to isolate the contri-

bution of the proposed denotational-semantics model, we train our model on pre-parsed questions.

Note that, all LSTM based models only have access to the entities of the KG but not the relationship

information between them. See Appendix C for details.

7.6 Results

Our experiments investigate the ability of our model to understand complex synthetic and natural

language queries, learn interpretable structure, and generalize compositionally. We also isolate the

effect of learning the syntactic structure and representing sub-phrases using explicit denotations.

Short Questions Performance: Table 10 shows that our model perfectly answers all test ques-

tions, demonstrating that it can learn challenging semantic operators and induce parse trees from

end task supervision. Performance drops when using external parser, showing that our model learns

an effective syntactic model for this domain. The Relation Network also achieves good performance,

particularly on questions involving relations. LSTM baselines work well on questions not involving

relations.3

3Relation questions are out of scope for these models.

112

Model Non-relation
Questions

Relation
Questions Overall

LSTM (No KG) 46.0 39.6 41.4
LSTM 62.2 49.2 52.2
Bi-LSTM 55.3 47.5 49.2
Tree-LSTM 53.5 46.1 47.8
Tree-LSTM (Unsup.) 64.5 42.6 53.6
Relation Network 51.1 38.9 41.5
Our Model (Pre-parsed) 94.7 74.2 78.8
Our Model 81.8 85.4 84.6

Table 11: Results for Complex Questions (CLEVRGEN): All baseline models fail to generalize
well to questions requiring longer chains of reasoning than those seen during training. Our model
substantially outperforms the baselines, showing its ability to perform complex multi-hop reasoning,
and generalize from its training data.

Complex Questions Performance: Table 11 shows results on complex questions, which are con-

structed by combining components of shorter questions. These require complexmulti-hop reasoning,

and the ability to generalize robustly to new types of questions. We use the same models as in Ta-

ble 10, which were trained on short questions. All baselines achieve close to random performance,

despite high accuracy for shorter questions. This shows the challenges in generalizing RNN en-

coders beyond their training data. In contrast, the strong inductive bias from our model structure

allows it to generalize well to complex questions. Our model outperforms Tree-LSTM (Unsup.)

and the version of our model that uses pre-parsed questions, showing the effectiveness of explicit

denotations and learning the syntax, respectively.

Performance onHuman-generated Language: Table 12 shows the performance of our model on

complex human-generated queries in GenX. Our approach outperforms strong LSTM and semantic

parsing baselines, despite the semantic parser’s use of hard-coded operators. These results suggest

that our method represents an attractive middle ground between minimally structured and highly

structured approaches to interpretation. Our model learns to interpret operators such as except that

were not considered during development. This shows that our model can learn to parse human

language, which contains greater lexical and structural diversity than synthetic questions. Trees

induced by the model are linguistically plausible (see Appendix D).

113

Model Accuracy

LSTM (No KG) 0.0
LSTM 64.9
Bi-LSTM 64.6
Tree-LSTM 43.5
Tree-LSTM (Unsup.) 67.7
Sempre 48.1
Our Model (Pre-parsed) 67.1
Our Model 73.7

Table 12: Results for Human Queries (GenX): Our model outperforms LSTM and semantic pars-
ing models on complex human-generated queries, showing it is robust to work on natural language.
Better performance than Tree-LSTM (Unsup.) shows the efficacy in representing sub-phrases us-
ing explicit denotations. Our model also performs better without an external parser, showing the
advantages of latent syntax.

Error Analysis: We find that most model errors are due to incorrect assignments of structure,

rather than semantic errors from the modules. For example, in the question Are four red spheres

beneath a metallic thing small?, our model’s parse composes metallic thing small into a constituent

instead of composing red spheres beneath a metallic thing into a single node. Future work should

explore more sophisticated parsing models.

Discussion: While our model shows promising results, there is significant potential for future

work. Performing exact inference over large KGs is likely to be intractable, so approximations such

as KNN search, beam search, feature hashing or parallelization may be necessary. To model the

large number of entities in KGs such as Freebase, techniques proposed by recent work (Verga et al.,

2017; Gupta et al., 2017) that explore representing entities as composition of its properties, such

as, types, description etc. could be used. The modules in this work were designed in a way to

provide good inductive bias for the kind of composition we expected them to model. For example,

EV + E→ E is modeled as a linear composition function making it easy to represent words such as

and and or. These modules can be exchanged with any other function with the same ‘type signature’,

with different trade-offs—for example, more general feed-forward networks with greater represen-

tation capacity would be needed to represent a linguistic expression equivalent to xor. Similarly,

more module types would be required to handle certain constructions—for example, a multiword

114

relation such asmuch larger than needs aV +V→Vmodule. Significant effort would be needed to

design such modules, that take language as parameters, for textual reasoning. These are all exciting

directions for future research.

7.7 Summary

In this chapter, we introduced a model for compositional question understanding that combines ideas

from compositional semantics with end-to-end learning of composition operators and structure. We

demonstrated that the model is able to learn a number of complex composition operators from end

task supervision, and showed that the linguisticallymotivated inductive bias imposed by the structure

of the model allows it to generalize well beyond its training data. Future work should explore scaling

the model to more realistic questions by relaxing the independence assumptions, using more general

composition modules, and introducing additional module types.

115

Chapter 8

Conclusion

The thesis began by motivating the need for developing language understanding systems that are

capable of representing and reasoning about the compositional nature of language to tackle com-

plex language-related tasks and generalize to novel problem instances in a manner humans do. We

discussed how the dominant paradigm of training large monolithic neural network models using

huge amounts of labeled input-output pairs for complex tasks is problematic and ignores the issue of

compositional processing. We argued that due to the extremely high-dimensional nature of natural

language, such data will always contain spurious correlations, that these expressive neural networks

will latch onto, leading to models that will fail to generalize.

In Chapter 3, we present a machine learning model with a modular architecture for answering com-

plex, compositional questions against natural language text. Our approach, based on neural module

networks (Andreas et al., 2016), leverages the compositional structure provided by formal seman-

tics by mapping the question into a formal meaning representation that dictates the reasoning struc-

ture required to answer the question. This is combined with the representational capacity of neural

networks—we design an inventory of learnable neural modules to perform various atomic language

understanding and symbolic reasoning tasks (e.g., arithmetic, sorting, comparisons, counting) in a

human-interpretable and differentiable manner. The question’s meaning representation guides the

116

structure in which the modules are composed yielding a question-dependent model architecture. The

modules are designed to operate independently with the idea that they can be freely composed to

perform novel complex reasoning that is never observed during training. Module differentiability

makes the model end-to-end differentiable and allows for learning via end-task supervision. The

structured architecture of the model allows us to inject background knowledge and intermediate

module-output supervision via auxiliary training objectives. Our experiments on the DROP (Dua

et al., 2019) dataset demonstrates the feasibility of our approach.

In Chapter 4, we study the implications of learning from just end-task supervision. We show that

having a modular architecture, like the one in the previous chapter, is not enough to induce the

correct problem decomposition when learning from just input-output pairs. The output supervision

provides a very weak indirect signal for what the correct output of the modules should be, and is

insufficient to induce correct module behavior. We introduce the concept of module faithfulness—

whether a module learns to perform its intended task—and propose systematic evaluation metrics

to quantify module correctness in both textual and visual reasoning models. We collect annotations

to carry out this study, and find that in the absence of any intermediate module output supervision,

the modules do not learn to perform their intended operation. The composition of modules forms

an expressive neural neural network without any constraints on the intermediate outputs, and as a

result, the modules do not learn to separate out the sub-tasks intended for them only using end-task

supervision. We also show that modules trained in such manner do not compose freely in novel

contexts which in turn hurts generalization.

In Chapter 5, to address the limitations of learning from end-task supervision, we propose a new train-

ing paradigm that leverages paired examples—training instances that share internal substructure—to

provide indirect supervision to the intermediate outputs of a model that performs explicit problem

decomposition. In this approach, when two related training examples share internal substructure, we

add an additional training objective to encourage consistency between the latent outputs resulting

from the shared substructure. This objective does not require external supervision for the values of

the latent decisions, yet provides an additional training signal to that provided by individual train-

117

ing examples. We apply this technique to our modular question-answering model by enforcing that

similar question-program subtrees for different questions, yield the same output from partial model

execution. For example, for How many field goals were scored? andWhat is the longest field goal?,

we will encourage that the output of the sub-computation ‘what are the field goals’ yields the same

output for both the questions. We also explore different ways of acquiring paired training exam-

ples. Our experiments on the DROP dataset demonstrate that this training paradigm when applied

to our model results in significantly better in- and out-of distribution generalization, and also signifi-

cantly improves the learning of modules to perform their intended tasks, according to the evaluation

proposed in the previous chapter.

In Chapter 6, we apply our paired training paradigm to another language understanding task in which

the model predicts a structured, human-interpretable latent output—semantic parsing in a weakly

supervised setting. The key challenge in learning semantic parsers from weak supervision is the

prevalence of spurious programs—programs that do not represent the meaning of the utterance yet

execute to the correct output. Existence of such programs makes the learning quite challenging since

there is no way to distinguish such programs from the correct ones. We apply our paired training

approach to a seq2seq semantic parser to reward programs that map the same phrase in paired inputs

to the same sub-parts in their respective programs. This ensures that a phrase in different utterances

is consistently interpreted, thus allowing the parser to induce the correct utterance decomposition and

learn generalizable correspondence between natural language and program tokens. On the Natural

Language Visual Reasoning (NLVR) dataset Suhr et al. (2017) we demonstrate that this approach

yields significant improvements over previous best approaches.

In Chapter 7, we propose a fully-grounded question understanding approach that resembles Mon-

tague semantics (Montague, 1973). This approach differs from the approaches used throughout

this dissertation in two key ways. Firstly, in the seq2seq based semantic parsers used previously,

there are no predictions for explicit meaning representations of the sub-expressions of the question,

i.e., parts of the question are not interpreted independently of their context. Lack of this indepen-

dence limits a seq2seq model’s ability to process language compositionally, and allows the model to

118

latch onto unintended correlations, which hampers their systematic generalization (Lake and Baroni,

2018). Instead, in the approach proposed in this chapter, each constituent span in the question is rep-

resented by a denotation in the context (a knowledge-graph in this case) and a vector that captures

ungrounded aspects of meaning. Subsequently, learnable composition modules recursively combine

constituent spans, culminating in a denotation for the complete question. The other key difference in

this approach is how the modules are parameterized. Similar to previous approaches, modules con-

tain learnable parameters, but in this approach some modules can also take ‘language’ parameters

as argument to perform different operations using the same module. For example, previously we

would define two separate modules add(N, N) → N and subtract(N, N) → N to carry out the

two operations. In this model, we can define a single module arithmetic(N, N, word) → N to

carry out different operations by using the parameters associated with the word to change the oper-

ational form of the module. This allows us to define a small number of compositional modules and

let the data guide the learning of semantic operators required to solve the problems. We demonstrate

the efficacy of this approach on data generated from a pre-defined grammar and on human-written

utterances from the Referring Expressions (FitzGerald et al., 2013) dataset, and show that it leads to

significantly better systematic generalization. The approach we describe has limitations which limits

its direct usage in a real-world setting, but is an interesting direction that warrants future research.

8.1 Summary of Contributions

The principal contributions of this work can be summarized as follows:

1. We present a modular approach, based on neural module networks (NMNs; Andreas et al.,

2016), for answering compositional questions against open-domain natural language para-

graphs. We design modules for performing basic natural language understanding operations

(e.g., grounding entities/events in paragraph, predicate-argument extraction) and discrete sym-

bolic operations on numbers and dates (e.g., counting, min/max, arithmetic, comparisons) in a

probabilistic and differentiable manner. This leads to an end-to-end differentiable model that

can be trained from end-task supervision, and is capable of performing complex reasoning in

an interpretable manner.

119

2. We demonstrate the implications of learning from just end-task supervision in compositional

structured models (e.g., neural module networks (NMNs)). We develop systematic evaluation

techniques for measuring the correctness of intermediate outputs (e.g., outputs of modules) in

compositional models for textual and visual reasoning. Our evaluations demonstrate that mod-

els do not learn to perform the correct intermediate reasoning tasks from just weak end-task

supervision. Furthermore, training in such manner hurts interpretability and generalization.

3. We design a new training paradigm that improves learning in compositional structured mod-

els by leveraging groups of related training examples that share internal substructure. By

enforcing consistency in the latent decisions corresponding to the shared substructure, this ap-

proach induces the correct compositional processing and is able to provide additional indirect

supervision beyond what is provided by individual examples. We demonstrate that this leads

to improved performance in neural module networks and semantic parsing when trained in

weakly-supervised settings.

4. We provide a fully-grounded question understanding approach for answering compositional

questions against knowledge-graphs. This approach presents a significant departure from

Seq2Seq methods for semantic parsing by recursively building an explicit tree containing

meaning representations for the sub-expressions of the question. Further, the composition

modules designed for this approach are parameterized by language mitigating the need to man-

ually define discrete operators. The model learns a variety of challenging semantic operators

(e.g., quantifiers, disjunctions and composed relations) in a data-driven manner.

8.2 Future Directions

In many aspects, the research done in this dissertation is exploratory in nature. This exploration

of encouraging compositional processing in language understanding systems has revealed several

challenges and interesting directions for future research. We briefly describe a few of them below.

120

Context-conditional planning One key drawback of our approach is that the reasoning plan for

a question (question → program) is predicted independently of the information presented by the

context. This is limiting since different operations might be needed to answer the same question

depending on the available information. On the contrary, a human would possibly approach this

problem by generating multiple potential plans and estimating their feasibility on-the-fly by per-

forming partial executions. Developing such planning-based question-answering models should be

explored.

Paired Training for Pre-trained Language Models In the last couple of years, large pre-trained

language models for contextualized text representations have shown extremely impressive perfor-

mance on a variety of benchmark NLP tasks (Devlin et al., 2019; Brown et al., 2020). At the same

time, the compositional generalization capabilities of these models have been brought under scrutiny

by various studies (Gardner et al., 2020; Oren et al., 2020; Akula et al., 2020). In Chapters 5 and

6 we show that our paired training paradigm can induce compositional processing in modular archi-

tectures without requiring additional supervision. It will be interesting to explore the idea of paired

training to devise unsupervised objectives for pre-training on unlabeled data to provide language

models with the required compositional inductive bias.

Diverse reasoning phenomena Our question-answering model in Chapter 3 is limited in its rea-

soning capability by the inventory of modules defined in the model. While it is capable of handling a

diverse set of phenomena, many interesting phenomena are yet to be explored. Performing reasoning

that requires key-value representations, and modeling challenging linguistic quantifiers (e.g., gener-

alized quantifiers) that require set-theoretic reasoning, in a differentiable manner, over distributed

representations of text, is important but also quite challenging. Similarly, exploring the idea pre-

sented in Chapter 7 of defining higher-order modules that can be parameterized by language to learn

semantic operations in a data-driven manner in real-world settings is an interesting direction for fu-

ture research. Such approaches can allow scaling models with modular architectures to reason about

a diverse range of challenging phenomena without combinatorially blowing up the space of logical

meaning representations or requiring significant human effort.

121

The work presented in this dissertation explores the idea of compositional reasoning in language

understanding systems. This is an intriguing direction with a wide variety of questions that remain

to be explored and answered. We believe that to develop AI agents with human-like capabilities,

they need to be able to understand the world in a compositional manner.

122

APPENDIX

A.1 Auxiliary Supervision in NMN

In this section, we describe how the auxiliary supervision is derived for training our QA model in

Chapter 3.

Auxiliary Question Parse Supervision For questions with parse supervision z∗, we decouple the

marginal likelihood into two maximum likelihood objectives, p(z∗|q) and p(y∗|z∗). We also add a

loss for the decoder to attend to the tokens in the question attention supervision when predicting the

relevant modules. The question attention supervision is provided as a mutli-hot vector α∗ ∈ {0, 1}n.

The loss against the predicted attention vector α is, Qloss = −
∑n

i=1 α
∗
i logαi. Since the predicted

attention is a normalized distribution, the objective increases the sum of log-probabilities of the

tokens in the supervision.

The following patterns are used to extract the question parse supervision for the training data:

1. what happened first SPAN1 or SPAN2?

span(compare-date-lt(find(), find())): with find attentions on SPAN1 and SPAN2, respec-

tively. Use compare-date-gt, if second instead of first.

2. were there fewer SPAN1 or SPAN2?

span(compare-num-lt(find(), find())): with find attentions on SPAN1 and SPAN2, respec-

tively. Use compare-num-gt, if more instead of fewer.

3. how many yards was the longest {touchdown / field goal}?

find-num(find-max-num(find())): with find attention on touchdown / field goal. For shortest,

the find-min-num module is used.

4. how many yards was the longest {touchdown / field goal} SPAN ?

find-num(find-max-num(filter(find()))): with find attention on touchdown / field goal and

123

filter attention on all SPAN tokens.

5. how many {field goals, touchdowns, passes} were scored SPAN?

count(filter(find())): with find attention on {field goals, touchdowns, passes} and filter

attention on SPAN.

6. who {kicked, caught, threw, scored} SPAN?

span(relocate(filter(find()))): with relocate attention on {kicked, caught, threw, scored},

find attention on {touchdown / field goal}, and filter attention on all other tokens in the SPAN.

Heuristic Intermediate Module Output Supervision As mentioned in Section 4.3, we heuristi-

cally find supervision for the output of the find-num and find-datemodule for a subset of questions

that already contain question program supervision. These are as follows:

1. how many yards was the longest/shortest {touchdown, field goal}?

We find all instances of touchdown/field goal in the passage and assume that the number appear-

ing closest should be an output of the find-num module.

2. what happened first EVENT1 or EVENT2?

Similar to above, we perform fuzzymatching to find the instance of EVENT1 and EVENT2 in the

paragraph and assume that the closest dates should be the output of the two find-date module

calls made by the compare-date-lt module in the gold program.

3. were there fewer SPAN1 or SPAN2?

This is exactly the same as previous for find-num module calls by compare-num-lt.

A.2 Measuring Faithfulness in Visual-NMN

A.2.1 Numerators of Precision and Recall

As stated in Section 4.3.1, for a given module type and a given example, precision is defined as the

number of matched proposed bounding boxes divided by the number of proposed bounding boxes to

124

which the module assigns a probability more than 0.5. Recall is defined as the number of matched

annotated bounding boxes divided by the number of annotated bounding boxes. Therefore, the

numerators of the precision and the recall need not be equal. In short, the reason for the discrepancy

is that there is no one-to-one alignment between annotated and proposed bounding boxes. To further

illustrate why we chose not to have a common numerator, we will consider two sensible choices for

this shared numerator and explain the issues with them.

One choice for the common numerator is the number of matched proposed bounding boxes. If

we were to keep the denominator of the recall the same, then the recall would be defined as the

number of matched proposed bounding boxes divided by the number of annotated bounding boxes.

Consider an example in which there is a single annotated bounding box that is aligned with five

proposed bounding boxes. When this definition of recall is applied to this example, the numerator

would exceed the denominator. Another choice would be to set the denominator to be the number

of proposed bounding boxes that are aligned with some annotated bounding box. In the example,

this approach would penalize a module that gives high probability to only one of the five aligned

proposed bounding boxes. However, it is not clear that a module giving high probability to all five

proposed boxes is more faithful than a module giving high probability to only one bounding box (e.g.

perhaps one proposed box has a much higher IOU with the annotated box than the other proposed

boxes). Hence, this choice for the numerator does not make sense.

Another choice for the common numerator is the number of matched annotated bounding boxes. If

we were to keep the denominator of the precision the same, then the precision would be defined

as the number of matched annotated bounding boxes divided by the number of proposed bounding

boxes to which the module assigns probability more than 0.5. Note that since a single proposed

bounding box can align with multiple annotated bounding boxes, it is possible for the numerator to

exceed the denominator.

Thus, these two choices for a common numerator have issues, and we avoid these issues by defining

the numerators of precision and recall separately.

125

A.3 Details about Modules

See Table 13 for details. First five contain parameters, the rest are deterministic. The implementation

of count shown here is the Sum-count version; please see Section 4.4 for a description of other

count module varieties and a discussion of their differences. ‘B’ denotes the Boolean type, which

is a probability value ([0..1]). ‘N’ denotes the Number type which is a probability distribution.

K = 72 is the maximum count value supported by our model. To obtain probabilities, we first

convert each Normal random variable X to a categorical distribution over {0, 1, ...,K} by setting

Pr[X = k] = Φ(k + 0.5) − Φ(k − 0.5) if k ∈ {1, 2, ...,K − 1}. We set Pr[X = 0] = Φ(0.5)

and Pr[X = K] = 1 − Φ(K − 0.5). Here Φ(·) denotes the cumulative distribution function of the

Normal distribution. W1,W2 are weight vectors with shapes 2h× 1 and h× 1, respectively. Here

h = 768 is the size of LXMERT’s representations. b1 is a scalar weight. MLP denotes a two-layer

neural network with a GeLU activation Hendrycks and Gimpel (2016) between layers. x denotes

a question representation, and vi denotes encodings of objects in the image. x and vi have shape

h× |B|, where |B| is the number of proposals. p denotes a vector of probabilities for each proposal

and has shape 1 × |B|. ⊙ and [;] represent elementwise multiplication and matrix concatenation,

respectively. The expressions for the mean and variance in the division module are based on the

approximations in Seltman (2018). The macros execute a given program on the two input images.

in-at-least-one-image macro returns true iff the program returns true when executed on at least

one of the images. in-each-image returns true iff the program returns true when executed on both

of the images. in-one-other-image takes two programs and returns true iff one program return

true on left image and second program returns true on right image, or vice-versa.

A.4 Significance tests

We perform a paired permutation test to test the hypothesis H0: NMN w/ Graph-count + decont. +

pretraining has the same inherent faithfulness as NMN w/ Layer-count. We follow the procedure

described by Ventura (2007), which is similar to tests described by Yeh (2000) and Noreen (1989).

Specifically, we performNtotal = 100, 000 trials in which we do the following. For every example,

126

Module Output Implementation
find[qatt] p W T

1 ([x; v]) + b1
filter[qatt](p) p p⊙ (W T

1 ([x; v]) + b1)
with-relation[qatt](p1, p2) p max(p2)p1 ⊙MLP([x; v1; v2])
project[qatt](p) p max(p)find(qatt)⊙MLP([W2; v1; v2])
count(p) N number

(∑
(p), σ2

)
exist(p) B greater-equal(p, 1)
greater-equal (a : N, b : N) B greater(a, b) + equal(a, b)
less-equal (a : N, b : N) B less(a, b) + equal(a, b)
equal(a : N, b : N) B

∑K
k=0 Pr[a = k]Pr[b = k]

less(a : N, b : N) B
∑K

k=0 Pr[a = k]Pr[b > k]

greater(a : N, b : N) B
∑K

k=0 Pr[a = k]Pr[b < k]
and(a : B, b : B) B a*b
or(a : B, b : B) B a+b-a*b
number(m : F, v : F) N Normal(mean = m, var = v)
sum(a : N, b : N) N number (amean + bmean, avar + bvar)
difference(a : N, b : N) N number (amean − bmean, avar + bvar)

division(a : N, b : N) N number
(
amean
bmean

+ bvaramean
b3mean

, a
2
mean

b2mean

(
avar
a2mean

+ bvar
b2mean

))
intersect(p1, p2) p p1 · p2
discard(p1, p2) p max(p1 − p2, 0)
in-left-image(p) p p s.t. probabilities for right image are 0
in-right-image(p) p p s.t. probabilities for left image are 0
in-at-least-one-image B macro (see caption)
in-each-image B macro (see caption)
in-one-other-image B macro (see caption)

Table 13: Implementations of modules for NLVR2 NMN.

with probability 1/2 we swap the F1 scores obtained by the two models for that example. Then we

check whether the difference in the aggregated F1 scores for the two models is at least as extreme

as the original difference in the aggregated F1 scores of the two models. The p-value is given by
Nexceed
Ntotal

, where Nexceed is the number of trials in which the new difference is at least as extreme as

the original difference.

127

GLOSSARY

Chapter 3

q input natural language question

p natural language paragraph provided as context

z predicted logical form representation of q

y predicted output answer for the question q

JzK output of the execution of z (= y)

Q contextualized token representations of the question

P contextualized token representations of the question

J maximum marginal likelihood training objective

R attention map for predicate-argument extraction

Anum attention map from tokens to number tokens

Adate attention map from tokens to date tokens

H r
loss unsupervised auxiliary loss for argument attention map

Hn
loss unsupervised auxiliary loss for number attention map

Hd
loss unsupervised auxiliary loss for date attention map

Hloss final unsupervised auxiliary loss (Hn
loss + H

d
loss + H

r
loss)

Chapter 4

x input natural language utterance (question or statement)

z logical meaning representation of x as an executable program

y output denotation by executing z (answer or truth-value)

B set of bounding boxes identified in an image

p output probability for each bounding box ∈ [0, 1]|B|

Chapter 5

x input example

z computation tree for x (e.g., z = f(g(x), h(x)))

128

JzK output of the execution of z

y output for x, i.e., y = JzK
xi a particular training example

xj paired example for xi

g(xi) internal computation for xi paired with xj

g(xj) internal computation for xj shared with xi

S(Jg(xi)K, Jg(xj)K) consistency metric between g(xi) and g(xj)

Lpaired paired training objective based on the consistency metric

Chapter 6

x input natural language utterance

c set of images provided as context with x

y gold output supervision for x (truth-value in NLVR)

z logical meaning representation of x as an executable program

JzK output of the execution of z

R(x, z, c, y) reward function to score z

x′ paired utterance related to x

p shared phrase between x and x′

A(z, p) set of relevant program actions in z corresponding to p

S(z, z′, p) consistency reward between z and z′ based on shared phrase p

C(x, z, x′) consistency reward for program z of x

Chapter 7

q input natural language question

w1..|q| tokens in the question

JqK output denotation of q (= Jw1..|q|K)
KG knowledge-graph associated with q

E set of entities (nodes) in the KG

R relationships between entities (directed labeled edges) in the KG

129

p(t|wi) semantic type distribution for a token

ψt
i,j semantic t-type potential for phrase wi..jJwi..jKt t-type denotation for wi..j

L maximum log-likelihood training objective

130

BIBLIOGRAPHY

A. Agrawal, J. Lu, S. Antol, M. Mitchell, C. L. Zitnick, D. Parikh, and D. Batra. VQA: Visual
Question Answering. International Journal of Computer Vision, 2015.

A. R. Akula, S. Gella, Y. Al-Onaizan, S. Zhu, and S. Reddy. Words aren’t enough, their order matters:
On the Robustness of Grounding Visual Referring Expressions. In Proc. of the Annual Meeting
of the Association for Computational Linguistics (ACL), 2020.

J. Andreas. Good-Enough Compositional Data Augmentation. In Proc. of the Annual Meeting of
the Association for Computational Linguistics (ACL), 2020.

J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning to Compose Neural Networks for
Question Answering. In Proc. of the Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), San Diego, California, 2016. URL https:
//www.aclweb.org/anthology/N16-1181.

Y. Artzi and L. Zettlemoyer. Bootstrapping Semantic Parsers from Conversations. In Proc. of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2011.

Y. Artzi and L. Zettlemoyer. Weakly Supervised Learning of Semantic Parsers for Mapping Instruc-
tions to Actions. Transactions of the Association for Computational Linguistics, 2013.

A. Asai and H. Hajishirzi. Logic-Guided Data Augmentation and Regularization for Consistent
Question Answering. In Proc. of the Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2020.

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align and
Translate. CoRR, abs/1409.0473, 2015.

D. Bahdanau, H. D. Vries, T. J. O’Donnell, S. Murty, P. Beaudoin, Y. Bengio, and A. C. Courville.
CLOSURE: Assessing Systematic Generalization of CLEVRModels. In ViGIL@NeurIPS, 2019.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proc. of the Interna-
tional Conference on Machine Learning (ICML), 2009.

J. Berant and P. Liang. Semantic Parsing via Paraphrasing. In Proc. of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2014.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on Freebase from Question-
Answer pairs. In Proc. of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2013.

R. L. Bras, S. Swayamdipta, C. Bhagavatula, R. Zellers, M. E. Peters, A. Sabharwal, and Y. Choi.
Adversarial Filters of Dataset Biases. In Proc. of the International Conference on Machine Learn-
ing (ICML), 2020.

131

https://www.aclweb.org/anthology/N16-1181
https://www.aclweb.org/anthology/N16-1181

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, Am, a Askell, S, hini Agarwal, A. Herbert-Voss, G. Krüger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McC, lish, A. Radford, I. Sutskever, and D. Amodei. Language
Models are Few-Shot Learners. ArXiv, abs/2005.14165, 2020.

Q. Cai and A. Yates. Large-scale Semantic Parsing via Schema Matching and Lexicon Extension.
In Proc. of the Annual Meeting of the Association for Computational Linguistics (ACL), 2013.

B. Carpenter. Type-Logical Semantics. 1997.

M.-W. Chang, L. Ratinov, and D. Roth. Guiding Semi-Supervision with Constraint-Driven Learning.
In Proc. of the Annual Meeting of the Association for Computational Linguistics (ACL), pages
280–287, Prague, Czech Republic, 6 2007. Association for Computational Linguistics. URL
http://cogcomp.org/papers/ChangRaRo07.pdf.

M.-W. Chang, V. Srikumar, D. Goldwasser, and D. Roth. Structured Output Learning with Indirect
Supervision. In Proc. of the International Conference on Machine Learning (ICML), 2010. URL
http://cogcomp.org/papers/CSGR10.pdf.

X. Chen, C. Liang, A. W. Yu, D. Zhou, D. Song, and Q. V. Le. Neural Symbolic Reader: Scalable
Integration of Distributed and Symbolic Representations for Reading Comprehension. In Proc.
of the International Conference on Learning Representations, 2020.

K. Cho, B. V. Merrienboer, Çaglar Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Transla-
tion. InProc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP),
2014.

C. Clark, M. Yatskar, and L. Zettlemoyer. Don’t Take the Easy Way Out: Ensemble Based Methods
for Avoiding Known Dataset Biases. In Proc. of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2019.

J. Clarke, D. Goldwasser, M.-W. Chang, and D. Roth. Driving Semantic Parsing from the World’s
Response. In Proc. of the Conference on Computational Natural Language Learning (CoNLL), 7
2010. URL http://cogcomp.org/papers/CGCR10.pdf.

Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu. Attention-over-Attention Neural Networks for
Reading Comprehension. In Proc. of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2017.

P. Dasigi, M. Gardner, S. Murty, L. Zettlemoyer, and E. Hovy. Iterative Search for Weakly Super-
vised Semantic Parsing. In Proc. of the Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), 2019.

Y. Deng, Y. Kim, J. T. Chiu, D. Guo, and A. M. Rush. Latent Alignment and Variational Attention.
In NeurIPS, 2018.

132

http://cogcomp.org/papers/ChangRaRo07.pdf
http://cogcomp.org/papers/CSGR10.pdf
http://cogcomp.org/papers/CGCR10.pdf

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL-HLT, 2019.

B. Dhingra, H. Liu, Z. Yang, W. Cohen, and R. Salakhutdinov. Gated-Attention Readers for Text
Comprehension. In Proc. of the Annual Meeting of the Association for Computational Linguistics
(ACL), 2017. URL https://www.aclweb.org/anthology/P17-1168.

L. Dong and M. Lapata. Language to Logical Form with Neural Attention. In Proc. of the Annual
Meeting of the Association for Computational Linguistics (ACL), 2016.

R. Dror, S. Shlomov, and R. Reichart. Deep dominance-how to properly compare deep neural models.
In Proc. of the Annual Meeting of the Association for Computational Linguistics (ACL), 2019.

X. Du, J. Shao, and C. Cardie. Learning to Ask: Neural Question Generation for Reading Compre-
hension. In Proc. of the Annual Meeting of the Association for Computational Linguistics (ACL),
2017.

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. DROP: A Reading Compre-
hension Benchmark Requiring Discrete Reasoning Over Paragraphs. In NAACL-HLT, 2019.

C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith. Recurrent Neural Network Grammars. In
HLT-NAACL, 2016.

E. S. A. Efrat and M. Shoham. Tag-based Multi-Span Extraction in Reading Comprehension. 2019.
URL https://github.com/eladsegal/project-NLP-AML.

C. Finegan-Dollak, J. K. Kummerfeld, L. Zhang, K. Ramanathan, S. Sadasivam, R. Zhang, and
D. Radev. Improving Text-to-SQL Evaluation Methodology. In Proc. of the Annual Meeting of
the Association for Computational Linguistics (ACL), 2018. URL https://www.aclweb.org/
anthology/P18-1033.

N. FitzGerald, Y. Artzi, and L. S. Zettlemoyer. Learning Distributions over Logical Forms for
Referring Expression Generation. In Proc. of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2013.

K. Ganchev, J. Graça, J. Gillenwater, and B. Taskar. Posterior regularization for structured latent
variable models. Journal of Machine Learning Research (JMLR), 2010.

M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu, M. E. Peters, M. Schmitz,
and L. S. Zettlemoyer. AllenNLP: A Deep Semantic Natural Language Processing Platform. In
Proceedings of Workshop for NLP Open Source Software (NLP-OSS), 2018.

M. Gardner, J. Berant, H. Hajishirzi, A. Talmor, and S. Min. Question Answering is a Format; When
is it Useful? ArXiv, abs/1909.11291, 2019.

M. Gardner, Y. Artzi, V. Basmova, J. Berant, B. Bogin, S. Chen, P. Dasigi, D. Dua, Y. Elazar,
A. Gottumukkala, N. Gupta, H. Hajishirzi, G. Ilharco, D. Khashabi, K. Lin, J. Liu, N. F. Liu,
P. Mulcaire, Q. Ning, S. Singh, N. A. Smith, S. Subramanian, R. Tsarfaty, E. Wallace, A. Zhang,

133

https://www.aclweb.org/anthology/P17-1168
https://github.com/eladsegal/project-NLP-AML
https://www.aclweb.org/anthology/P18-1033
https://www.aclweb.org/anthology/P18-1033

and B. Zhou. Evaluating Models’ Local Decision Boundaries via Contrast Sets. In Findings of
EMNLP, 2020.

O. Goldman, V. Latcinnik, U. Naveh, A. Globerson, and J. Berant. Weakly-supervised Semantic
Parsing with Abstract Examples. In Proc. of the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2018.

D. Goldwasser and D. Roth. Learning from Natural Instructions. In Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI), 2011. URL http://cogcomp.org/papers/
GoldwasserRo11(2).pdf.

J. V. Graca, K. Ganchev, and B. Taskar. Expectation maximization and posterior constraints. In
NIPS, 2007.

N. Gupta and M. Lewis. Neural Compositional Denotational Semantics for Question Answering. In
Proc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018.

N. Gupta, S. Singh, and D. Roth. Entity Linking via Joint Encoding of Types, Descriptions, and
Context. In Proc. of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2017. URL http://cogcomp.org/papers/GuptaSiRo17.pdf.

N. Gupta, K. Lin, D. Roth, S. Singh, and M. Gardner. Neural Module Networks for Reasoning
over Text. In Proc. of the International Conference on Learning Representations, 2020a. URL
https://cogcomp.seas.upenn.edu/papers/GLRSG20.pdf.

N. Gupta, S. Singh, andM. Gardner. Enforcing Consistency inWeakly-Supervised Semantic Parsing.
In Under Review, 2021a.

N. Gupta, S. Singh, M. Gardner, and D. Roth. Paired Examples as Indirect Supervision in Latent
Decision Models. arXiv preprint arXiv:2104.01759, 2021b. URL https://arxiv.org/abs/
2104.01759.

T. Gupta, A. Vahdat, G. Chechik, X. Yang, J. Kautz, and D. Hoiem. Contrastive Learning forWeakly
Supervised Phrase Grounding. Proc. of the European Conference on Computer Vision (ECCV),
2020b.

S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. R. Bowman, and N. A. Smith. Annotation
Artifacts in Natural Language Inference Data. In NAACL-HLT, 2018.

K. Guu, P. Pasupat, E. Liu, and P. Liang. From Language to Programs: Bridging Reinforcement
Learning and Maximum Marginal Likelihood. In Proc. of the Annual Meeting of the Association
for Computational Linguistics (ACL), 2017.

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

K. Hermann, T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom.
Teaching Machines to Read and Comprehend. In NIPS, 2015.

134

http://cogcomp.org/papers/GoldwasserRo11(2).pdf
http://cogcomp.org/papers/GoldwasserRo11(2).pdf
http://cogcomp.org/papers/GuptaSiRo17.pdf
https://cogcomp.seas.upenn.edu/papers/GLRSG20.pdf
https://arxiv.org/abs/2104.01759
https://arxiv.org/abs/2104.01759

J. Herzig and J. Berant. Span-based Semantic Parsing for Compositional Generalization. ArXiv,
abs/2009.06040, 2020.

M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman. Learning to solve arithmetic word
problems with verb categorization. In Proc. of the Conference on Empirical Methods for Natural
Language Processing (EMNLP), 2014.

M. Hu, Y. Peng, Z. Huang, and D. Li. A Multi-Type Multi-Span Network for Reading Compre-
hension that Requires Discrete Reasoning. In Proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2019.

R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko. Learning to reason: End-to-end module
networks for visual question answering. In Proceedings of the IEEE International Conference on
Computer Vision, pages 804–813, 2017.

D. A. Hudson and C. D. Manning. Gqa: A new dataset for real-world visual reasoning and com-
positional question answering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6700–6709, 2019.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Mapping Language to Code in Programmatic
Context. In Proc. of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

Y. Ji, C. Tan, S. Martschat, Y. Choi, and N. A. Smith. Dynamic Entity Representations in Neu-
ral Language Models. In Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017.

R. Jia and P. Liang. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proc.
of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017.

J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Girshick. CLEVR: A
Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. In Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. TriviaQA: A Large Scale Distantly Supervised
Challenge Dataset for Reading Comprehension. In Proc. of the Annual Meeting of the Association
for Computational Linguistics (ACL), 2017.

N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In Proc. of the Confer-
ence on Empirical Methods for Natural Language Processing (EMNLP), 2013.

R. J. Kate, Y. W. Wong, and R. Mooney. Learning to Transform Natural to Formal Languages. In
Proc. of the Conference on Artificial Intelligence (AAAI), 2005.

D. Khashabi, T. Khot, A. Sabharwal, P. Clark, O. Etzioni, and D. Roth. Question Answering via
Integer Programming over Semi-Structured Knowledge. In Proc. of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 2016. URL http://cogcomp.org/papers/KKSCER16.
pdf.

135

http://cogcomp.org/papers/KKSCER16.pdf
http://cogcomp.org/papers/KKSCER16.pdf

D. Khashabi, T. Khot, A. Sabharwal, and D. Roth. Question Answering as Global Reasoning over
Semantic Abstractions. In Proc. of the Conference on Artificial Intelligence (AAAI), 2018. URL
http://cogcomp.org/papers/2018_aaai_semanticilp.pdf.

T. Khot, N. Balasubramanian, E. Gribkoff, A. Sabharwal, P. Clark, andO. Etzioni. ExploringMarkov
Logic Networks for Question Answering. In Proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2015.

C. Kiddon, L. Zettlemoyer, and Y. Choi. Globally Coherent Text Generation with Neural Check-
list Models. In Proc. of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2016.

J. Kinley and R. Lin. NABERT+ : Improving Numerical Reasoning in Reading Comprehension.
2019. URL https://github.com/raylin1000/drop-bert.

K. Korrel, D. Hupkes, V. Dankers, and E. Bruni. Transcoding compositionally: using attention to
find more generalizable solutions. In Proc. of the Annual Meeting of the Association for Compu-
tational Linguistics (ACL), 2019.

K. Krishna and M. Iyyer. Generating Question-Answer Hierarchies. In Proc. of the Annual Meeting
of the Association for Computational Linguistics (ACL), 2019.

R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A.
Shamma, et al. Visual genome: Connecting language and vision using crowdsourced dense image
annotations. International Journal of Computer Vision, 123(1):32–73, 2017.

J. Krishnamurthy, O. Tafjord, andA. Kembhavi. Semantic Parsing to Probabilistic Programs for Situ-
ated Question Answering. In Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2016. URL http://aclweb.org/anthology/D/D16/D16-1016.pdf.

J. Krishnamurthy, P. Dasigi, and M. Gardner. Neural Semantic Parsing with Type Constraints for
Semi-Structured Tables. In Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017.

A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong, R. Paulus, and
R. Socher. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. In
Proc. of the International Conference on Machine Learning (ICML), 2016.

N. Kushman, L. Zettlemoyer, R. Barzilay, and Y. Artzi. Learning to automatically solve algebra
word problems. In Proc. of the Annual Meeting of the Association of Computational Linguistics
(ACL), 2014.

T. Kwiatkowski, L. S. Zettlemoyer, S. Goldwater, and M. Steedman. Inducing Probabilistic CCG
Grammars from Logical Form with Higher-Order Unification. In Proc. of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2010.

T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and M. Steedman. Lexical Generalization in CCG

136

http://cogcomp.org/papers/2018_aaai_semanticilp.pdf
https://github.com/raylin1000/drop-bert
http://aclweb.org/anthology/D/D16/D16-1016.pdf

Grammar Induction for Semantic Parsing. In Proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2011.

T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer. Scaling Semantic Parsers with On-the-Fly
Ontology Matching. In Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2013.

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. P. Parikh, C. Alberti, D. Epstein, I. Polo-
sukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai, J. Uszko-
reit, Q. Le, and S. Petrov. Natural Questions: A Benchmark for Question Answering Research.
Transactions of the Association for Computational Linguistics, 2019.

C. C. T. Kwok, O. Etzioni, and D. S. Weld. Scaling question answering to the Web. In WWW ’01,
2001.

A. Lai and J. Hockenmaier. Illinois-LH: A Denotational and Distributional Approach to Semantics.
In SemEval@COLING, 2014.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. RACE: Large-scale ReAding Comprehension Dataset
From Examinations. In Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017.

B.M. Lake. Compositional generalization throughmeta sequence-to-sequence learning. InNeurIPS,
2019.

B. M. Lake and M. Baroni. Generalization without Systematicity: On the Compositional Skills of
Sequence-to-Sequence Recurrent Networks. In Proc. of the International Conference on Machine
Learning (ICML), 2018.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle-
moyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proc. of the Annual Meeting of the Association for Compu-
tational Linguistics (ACL), 2020.

T. Li, V. Gupta, M. Mehta, and V. Srikumar. A Logic-Driven Framework for Consistency of Neural
Models. In EMNLP/IJCNLP, 2019.

C. Liang, M. Norouzi, J. Berant, Q. V. Le, and N. Lao. Memory Augmented Policy Optimization
for Program Synthesis and Semantic Parsing. In NeurIPS, 2018.

P. Liang. Lambda Dependency-Based Compositional Semantics. arXiv, abs/1309.4408, 2013. URL
http://arxiv.org/abs/1309.4408.

P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional semantics. In Proc.
of the Annual Meeting of the Association of Computational Linguistics (ACL), 2011.

W. Ling, P. Blunsom, E. Grefenstette, K. Hermann, T. Kociský, F. Wang, and A. Senior. Latent

137

http://arxiv.org/abs/1309.4408

Predictor Networks for Code Generation. In Proc. of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2016.

I. R. L. Logan, N. F. Liu, M. E. Peters, M. Gardner, and S. Singh. Barack’s Wife Hillary: Using
Knowledge-Graphs for Fact-Aware Language Modeling. In Proc. of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2019.

J. Maillard, S. Clark, and D. Yogatama. Jointly Learning Sentence Embeddings and Syntax with
Unsupervised Tree-LSTMs. CoRR, abs/1705.09189, 2017. URL http://arxiv.org/abs/1705.
09189.

J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. The Neuro-Symbolic Concept Learner:
Interpreting Scenes Words and Sentences from Natural Supervision. In Proc. of the International
Conference on Learning Representations, 2019.

B. McCann, N. Keskar, C. Xiong, and R. Socher. The Natural Language Decathlon: Multitask
Learning as Question Answering. ArXiv, abs/1806.08730, 2018.

S. Miller, D. Stallard, R. J. Bobrow, and R. Schwartz. A Fully Statistical Approach to Natural Lan-
guage Interfaces. In Proc. of the Annual Meeting of the Association for Computational Linguistics
(ACL), 1996.

S. Min, E. Wallace, S. Singh, M. Gardner, H. Hajishirzi, and L. Zettlemoyer. Compositional Ques-
tions Do Not Necessitate Multi-hop Reasoning. In Proc. of the Annual Meeting of the Association
for Computational Linguistics (ACL), 2019.

P. Minervini and S. Riedel. Adversarially Regularising Neural NLI Models to Integrate Logical
Background Knowledge. In CoNLL, 2018.

R. Montague. The proper treatment of quantification in ordinary english. In P. Suppes, J. Moravcsik,
and J. Hintikka, editors, Approaches to Natural Language. 1973.

E. Noreen. Computer-Intensive Methods for Testing Hypotheses: An Introduction. Wiley, 1989.
ISBN 9780471611363. URL https://books.google.com/books?id=kinvAAAAMAAJ.

I. Oren, J. Herzig, N. Gupta, M. Gardner, and J. Berant. Improving Compositional Generalization
in Semantic Parsing. In Findings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020. URL https://cogcomp.seas.upenn.edu/papers/OHGGB20.pdf.

P. Pasupat and P. Liang. Compositional Semantic Parsing on Semi-Structured Tables. In Proc. of
the Annual Meeting of the Association for Computational Linguistics (ACL), 2015.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In
EMNLP, pages 1532–1543, 2014.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep
contextualized word representations. In NAACL-HLT, 2018.

138

http://arxiv.org/abs/1705.09189
http://arxiv.org/abs/1705.09189
https://books.google.com/books?id=kinvAAAAMAAJ
https://cogcomp.seas.upenn.edu/papers/OHGGB20.pdf

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research, 21:140:1–140:67, 2020.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100, 000+ Questions for Machine
Comprehension of Text. In Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-time Object Detection with
Region Proposal Networks. InProceedings of the International Conference onNeural Information
Processing Systems, 2015. URL http://dl.acm.org/citation.cfm?id=2969239.2969250.

M. T. Ribeiro, C. Guestrin, and S. Singh. Are red roses red? evaluating consistency of question-
answering models. In Proc. of the Annual Meeting of the Association for Computational Linguis-
tics (ACL), 2019.

M. Richardson, C. J. C. Burges, and E. Renshaw. Mctest: A challenge dataset for the open-domain
machine comprehension of text. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2013, pages 193–203, 2013.

A. S. Ross, M. C. Hughes, and F. Doshi-Velez. Right for the Right Reasons: Training Differentiable
Models by Constraining their Explanations. In Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI), 2017.

S. Roy and D. Roth. Solving General Arithmetic Word Problems. In Proc. of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2015. URL http://cogcomp.
org/papers/arithmetic.pdf.

A. M. Rush, S. Chopra, and J. Weston. A Neural Attention Model for Sentence Summarization. In
Proc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2015.

M. Sachan and E. Xing. Learning to Solve Geometry Problems from Natural Language Demonstra-
tions in Textbooks. In *SEM, 2017.

M. Sachan, K. A. Dubey, E. Xing, and M. Richardson. Learning Answer-Entailing Structures for
Machine Comprehension. In Proc. of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2015.

A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski, R. Pascanu, P. W. Battaglia, and T. P.
Lillicrap. A simple neural network module for relational reasoning. In NIPS, 2017.

H. Seltman. Approximations for Mean and Variance of a Ratio, 2018. URL http://www.stat.cmu.
edu/~hseltman/files/ratio.pdf.

M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional Attention Flow for Machine
Comprehension. In International Conference on Learning Representations (ICLR), 2017.

139

http://dl.acm.org/citation.cfm?id=2969239.2969250
http://cogcomp.org/papers/arithmetic.pdf
http://cogcomp.org/papers/arithmetic.pdf
http://www.stat.cmu.edu/~hseltman/files/ratio.pdf
http://www.stat.cmu.edu/~hseltman/files/ratio.pdf

N. Smith and J. Eisner. Contrastive estimation: Training log-linear models on unlabeled data. In
Proc. of the Annual Meeting of the Association of Computational Linguistics (ACL), 2005.

J. Stacey, P. Minervini, H. Dubossarsky, S. Riedel, and T. Rocktäschel. There is Strength in Num-
bers: Avoiding the Hypothesis-Only Bias in Natural Language Inference via Ensemble Adversar-
ial Training. ArXiv, abs/2004.07790, 2020.

M. Steedman. The syntactic process. In Language, speech, and communication, 2004.

S. Subramanian*, B. Bogin*, N. Gupta*, T.Wolfson, S. Singh, J. Berant, andM. Gardner. Obtaining
Faithful Interpretations from Compositional Neural Networks. In Proc. of the Annual Meeting
of the Association for Computational Linguistics (ACL), 2020. URL https://cogcomp.seas.
upenn.edu/papers/SBGWSBG20.pdf.

A. Suhr, M. Lewis, J. Yeh, and Y. Artzi. A Corpus of Natural Language for Visual Reasoning. In
Proc. of the Annual Meeting of the Association for Computational Linguistics (ACL), 2017.

A. Suhr, S. Zhou, A. Zhang, I. Zhang, H. Bai, and Y. Artzi. A Corpus for Reasoning about Natural
Language Grounded in Photographs. In Proc. of the Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2019. URL https://www.aclweb.org/anthology/P19-1644.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

K. S. Tai, R. Socher, and C. D. Manning. Improved Semantic Representations From Tree-Structured
Long Short-Term Memory Networks. In Proc. of the Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2015.

A. Talmor and J. Berant. TheWeb as a Knowledge-Base for Answering Complex Questions. In Proc.
of the Annual Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), 2018. URL https://www.aclweb.org/anthology/N18-1059.

H. Tan and M. Bansal. LXMERT: Learning Cross-Modality Encoder Representations from Trans-
formers. In Proc. of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2019. URL https://www.aclweb.org/anthology/D19-1514.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. ukasz Kaiser, and
I. Polosukhin. Attention is All you Need. In Advances in Neural Information Processing Systems.
2017. URL http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

D. Ventura. CS478 Paired Permutation Test Overview, 2007. URL http://axon.cs.byu.edu/
Dan/478/assignments/permutation_test.php. Accessed April 29, 2020.

P. Verga, A. Neelakantan, and A. McCallum. Generalizing to Unseen Entities and Entity Pairs
with Row-less Universal Schema. In Proc. of the Conference of the European Chapter of the
Association for Computational Linguistics (EACL), 2017.

140

https://cogcomp.seas.upenn.edu/papers/SBGWSBG20.pdf
https://cogcomp.seas.upenn.edu/papers/SBGWSBG20.pdf
https://www.aclweb.org/anthology/P19-1644
https://www.aclweb.org/anthology/N18-1059
https://www.aclweb.org/anthology/D19-1514
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php

O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E. Hinton. Grammar as a Foreign
Language. In NIPS, 2015a.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator.
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3156–3164,
2015b.

E. Voorhees. The TREC-8 Question Answering Track Report. In Proc. of the Text Retrieval Confer-
ence (TREC), 1999.

A. Wang, K. Cho, and M. Lewis. Asking and Answering Questions to Evaluate the Factual Con-
sistency of Summaries. In Proc. of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2020.

S. I.Wang, P. Liang, and C.Manning. Learning LanguageGames through Interaction. InAssociation
for Computational Linguistics (ACL), 2016.

J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards AI-Complete Question Answering: A
Set of Prerequisite Toy Tasks. arXiv: Artificial Intelligence, 2016.

S. Wiegreffe and Y. Pinter. Attention is not not Explanation. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2019. URL https://www.aclweb.org/
anthology/D19-1002.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 1992.

T. Winograd. Understanding natural language. Cognitive psychology, 1972.

T. Wolfson, M. Geva, A. Gupta, M. Gardner, Y. Goldberg, D. Deutch, and J. Berant. Break it
down: A question understanding benchmark. Transactions of the Association for Computational
Linguistics (TACL), 2020. URL https://arxiv.org/abs/2001.11770.

Y.-W. Wong and R. Mooney. Learning for semantic parsing with statistical machine translation.
In Proc. of the Annual Meeting of the North American Association of Computational Linguistics
(NAACL), 2006.

W. Woods. The lunar sciences natural language information system. BBN report, 1972.

A. Yeh. More accurate tests for the statistical significance of result differences. In Proceedings
of the 18th conference on Computational linguistics-Volume 2. Association for Computational
Linguistics, 2000.

P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation. In Proc. of
the Annual Meeting of the Association for Computational Linguistics (ACL), 2017.

J. M. Zelle and R. J. Mooney. Learning to parse database queries using inductive logic proramming.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), 1996.

141

https://www.aclweb.org/anthology/D19-1002
https://www.aclweb.org/anthology/D19-1002
https://arxiv.org/abs/2001.11770

L. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured classification
with probabilistic categorial grammars. In Proc. of the Conference on Uncertainty in Artificial
Intelligence (UAI), 2005.

L. Zettlemoyer and M. Collins. Online learning of relaxed CCG grammars for parsing to logical
form. In Proceedings of the 2007 Joint Conference of EMNLP-CoNLL, 2007.

T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger, and Y. Artzi. BERTScore: Evaluating Text
Generation with BERT. In Proc. of the International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Y. Zhang, J. Hare, and A. Prügel-Bennett. Learning to Count Objects in Natural Images for Visual
Question Answering. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B12Js_yRb.

X. Zhu, P. Sobihani, and H. Guo. Long short-term memory over recursive structures. In Proc. of the
International Conference on Machine Learning (ICML), 2015.

142

https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=B12Js_yRb

	ACKNOWLEDGMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Thesis Statement
	Outline of this Dissertation

	Background
	Semantic Parsing
	Question Answering
	Neural Module Networks

	Neural Module Networks for Reasoning over Text
	Introduction
	Overview of Approach
	Modules for Reasoning over Text
	Auxiliary Supervision
	Experimental Setup
	Results
	Future Directions
	Summary

	Module Faithfulness in Compositional Neural Networks
	Introduction
	Background
	Module-wise Faithfulness
	Improving Faithfulness in NMNs
	Experimental Setup
	Results
	Summary

	Paired Examples as Indirect Supervision in Latent Decision Models
	Introduction
	Paired Examples as Indirect Supervision for Latent Decisions
	Many Ways of Getting Paired Data
	Experimental Setup
	Results
	Related Approaches
	Summary

	Enforcing Consistency in Weakly Supervised Semantic Parsing
	Introduction
	Background
	Consistency Reward for Programs
	Consistency in Language
	Experiments
	Summary

	Neural Compositional Denotational Semantics for Question Answering
	Introduction
	Model Overview
	Compositional Semantics
	Parsing Model
	Experimental Details
	Results
	Summary

	Conclusion
	Summary of Contributions
	Future Directions

	
	APPENDIX
	Auxiliary Supervision in NMN
	Measuring Faithfulness in Visual-NMN
	Details about Modules
	Significance tests

	
	GLOSSARY
	BIBLIOGRAPHY

